首页> 外文期刊>IETE journal of research >Bearings-only Passive Target Tracking: Range Uncertainty Ellipse Zone
【24h】

Bearings-only Passive Target Tracking: Range Uncertainty Ellipse Zone

机译:仅方位被动目标跟踪:范围不确定性椭圆区

获取原文
获取原文并翻译 | 示例

摘要

ABSTRACT In passive underwater target tracking, the observer uses bearings-only measurements generated by radiation of the target. The measurements are always corrupted with noise, which creates an uncertainty zone around the target position. Unscented Kalman filter (UKF) is proved to be efficient nonlinear estimator to estimate the target motion parameters. It is of interest to know in many practical situations, regarding the convergence of the solution in terms of the reduction of the uncertainty zone within some specified limit. An effort is made to reduce and find the range uncertainty ellipse zone of the target using UKF covariance matrix in Monte Carlo simulation. Once the range uncertainty ellipse zone becomes less than a specified value, the solution is said to be converged. ABBREVIATIONS: RUEZ: Range Uncertainty Ellipse Zone; UKF: Unscented Kalman Filter; UT: Unscented Transformation; LHMA: Length of Half Major Axis
机译:摘要 在被动水下目标跟踪中,观测者使用目标辐射产生的仅方位测量。测量结果总是被噪声破坏,从而在目标位置周围形成不确定区。结果表明,无迹卡尔曼滤波(UKF)是估计目标运动参数的高效非线性估计方法。在许多实际情况下,了解在某个指定限度内减少不确定性区方面的解决方案的收敛性是很有趣的。在蒙特卡罗模拟中,利用UKF协方差矩阵减小并找到目标的范围不确定性椭圆区。一旦范围不确定度椭圆区小于指定值,则称解收敛。缩写:RUEZ:Range Uncertainty Ellipse Zone;UKF: 无迹卡尔曼滤波;UT: 无味变换;LHMA: 半长轴长度

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号