首页> 外文期刊>Autonomous robots >Robotic airships for exploration of planetary bodies with an atmosphere: autonomy challenges
【24h】

Robotic airships for exploration of planetary bodies with an atmosphere: autonomy challenges

机译:机器人飞艇在大气中探索行星体:自治挑战

获取原文
获取原文并翻译 | 示例
           

摘要

Robotic unmanned aerial vehicles have great potential as surveying and instrument deployment platforms in the exploration of planets and moons with an atmosphere. Among the various types of planetary aerovehicles proposed, lighter-than-atmosphere (LTA) systems are of particular interest because of their extended mission duration and long traverse capabilities. In this paper, we argue that the unique characteristics of robotic airships make them ideal candidates for exploration of planetary bodies with an atmosphere. Robotic airships extend the capabilities of balloons through their flight controllability, allowing (I) precise flight path execution for surveying purposes, (2) long-range as well as close-up ground observations, (3) station-keeping for long-term monitoring of high science value sites, (4) transportation and deployment of scientific instruments and in situ laboratory facilities across vast distances, and (5) opportunistic flight path replanning in response to the detection of relevant sensor signatures. Implementation of these capabilities requires achieving a high degree of vehicle autonomy across a broad spectrum of operational scenarios. The paper outlines some of the core autonomy technologies required to implement the capabilities listed above, drawing on work and results obtained in the context of AURORA (Autonomous Unmanned Remote Monitoring Robotic Airship), a research effort that focuses on the development of the technologies required for substantially autonomous robotic airships. We discuss airship modeling and control, autonomous navigation, and sensor-based flight control. We also outline an approach to airborne perception and monitoring which includes mission-specific target acquisition, discrimination and identification, and present experimental results obtained with AURORA.
机译:机器人无人飞行器作为测量大气中的行星和卫星的测量和仪器部署平台具有巨大潜力。在所提议的各种类型的行星飞行器中,比大气(LTA)系统更受关注,因为它们具有延长的任务持续时间和长行程能力。在本文中,我们认为机器人飞艇的独特特性使其成为探索具有大气层的行星体的理想人选。机器人飞艇通过其飞行可控性扩展了气球的功能,从而允许(I)精确执行飞行路径以进行测量,(2)远程和近距离地面观察,(3)保持站位以进行长期监控高价值的站点,(4)跨越远距离的科学仪器和现场实验室设施的运输和部署,以及(5)响应于检测到相关传感器特征而进行的机会飞行路线重新规划。要实现这些功能,就需要在广泛的操作场景中实现高度的车辆自主性。本文概述了实现上述功能所需的一些核心自主技术,并借鉴了AURORA(自主无人远程监控机器人飞艇)的研究成果和成果,该研究工作着重于开发所需的技术。基本上自主的机器人飞艇。我们讨论了飞艇建模和控制,自主导航以及基于传感器的飞行控制。我们还概述了一种空中感知和监视方法,其中包括特定任务目标的获取,辨别和识别,并介绍使用AURORA获得的实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号