...
首页> 外文期刊>Autonomous robots >Efficient recursive dynamics algorithms for operational-space control with application to legged locomotion
【24h】

Efficient recursive dynamics algorithms for operational-space control with application to legged locomotion

机译:用于操作空间控制的高效递归动力学算法在有腿运动中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper presents new recursive dynamics algorithms that enable operational-space control of floating-base systems to be performed at faster rates. This type of control approach requires the computation of operational-space quantities and suffers from high computational order when these quantities are directly computed through the use of the mass matrix and Jacobian from the joint-space formulation. While many efforts have focused on efficient computation of the operational-space inertia matrix , this paper provides a recursive algorithm to compute all quantities required for floating-base control of a tree-structure mechanism. This includes the first recursive algorithm to compute the dynamically consistent pseudoinverse of the Jacobian for a tree-structure system. This algorithm is extended to handle arbitrary contact constraints with the ground, which are often found in legged systems, and uses effective ground contact dynamics approximations to retain computational efficiency. The usefulness of the algorithm is demonstrated through application to control of a high-speed quadruped trot in simulation. Our contact-consistent algorithm demonstrates pitch and roll stabilization for a large dog-sized quadruped running at 3.6 m/s without any contact force sensing, and is shown to outperform a simpler Raibert-style posture controller. In addition, the operational-space control approach allows the dynamic effects of the swing legs to be effectively accounted for at this high speed.
机译:本文提出了新的递归动力学算法,该算法使浮基系统的操作空间控制能够以更快的速度执行。这种类型的控制方法需要计算操作空间量,并且当这些量是通过使用质量矩阵和来自关节空间公式的雅可比行列式直接计算时,会遭受较高的计算量。尽管许多努力集中在有效计算工作空间惯性矩阵上,但本文提供了一种递归算法来计算树结构机制的浮基控制所需的所有数量。这包括第一个递归算法,用于为树结构系统计算Jacobian动态一致的伪逆。该算法已扩展为处理通常在有腿系统中发现的与地面的任意接触约束,并使用有效的地面接触动力学近似值来保持计算效率。通过在仿真中控制高速四足小跑,证明了该算法的实用性。我们的接触一致算法演示了大型狗形四足动物在3.6 m / s下运行时的俯仰和侧倾稳定性,而没有任何接触力感测,并且其性能优于简单的Raibert型姿势控制器。另外,操作空间控制方法允许以这种高速度有效地解决摆腿的动态影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号