首页> 外文期刊>transactions of the korean institute of electrical engineers >A Study on the Computer Aided Diagnosis System for Early Gastric Cancer Lesion Based on EfficientNetV2-L through Data Filtering
【24h】

A Study on the Computer Aided Diagnosis System for Early Gastric Cancer Lesion Based on EfficientNetV2-L through Data Filtering

机译:基于EfficientNetV2-L数据滤波的早期胃癌病灶计算机辅助诊断系统研究

获取原文

摘要

© 2022 Korean Institute of Electrical Engineers. All rights reserved.Gastric cancer is a common cancer worldwide, especially in Korea. Early diagnosis is very important to increase the full recovery rate. However, early gastric cancer has no special symptoms and is a disease that even experts find difficult to diagnose in gastroscopy. Therefore, in this paper proposed a computer-aided diagnosis(CADx) for early gastric cancer diagnosis using EfficientNetV2-L. Due to the nature of medical data, it is difficult to collect a large amount of data. The data used for training was augmented using Cifar10 policy of the Google's AutoAugment. Additionally, the augmented image was used as an input to the model trained with the original dataset and filtered according to the classification threshold. EfficientNetV2 is a classification network designed Training-NAS that can learn the feature of lesions with a small number of parameters. As a result, EfficientNetV2 set to the threshold value of 0.9 achieved the performance of accuracy 0.943 for early gastric cancer and abnormal image classification. The AUC value also increases from 0.972 to 0.991, showing that the data filtering method of this study was effective for improvement of classification performance.
机译:© 2022 韩国电气工程师学会。保留所有权利。胃癌是世界范围内常见的癌症,尤其是在韩国。早期诊断对于提高完全康复率非常重要。然而,早期胃癌没有特殊症状,是一种即使是专家也难以在胃镜检查中诊断的疾病。因此,本文提出了一种基于EfficientNetV2-L的胃癌早期诊断计算机辅助诊断(CADx)。由于医疗数据的性质,很难收集大量数据。用于训练的数据使用 Google AutoAugment 的 Cifar10 策略进行了扩充。此外,增强图像被用作使用原始数据集训练的模型的输入,并根据分类阈值进行过滤。EfficientNetV2 是一个分类网络设计的训练 NAS,可以用少量的参数来学习病变的特征。结果,将 EfficientNetV2 设置为阈值 0.9,对于早期胃癌和异常图像分类实现了精度为 0.943 的性能。AUC值也从0.972增加到0.991,表明本研究的数据过滤方法对提高分类性能是有效的。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号