首页> 外文期刊>Expert Systems with Application >Waveguide quality inspection in quantum cascade lasers: A capsule neural network approach
【24h】

Waveguide quality inspection in quantum cascade lasers: A capsule neural network approach

机译:量子级联激光器中的波导质量检测:一种胶囊神经网络方法

获取原文
获取原文并翻译 | 示例

摘要

Growing demand for consumer electronic devices and telecommunications is expected to drive the quantum cascade laser (QCL) market. The increase in the production rate of QCLs increases the likelihood of production failures and anomalies. The detection of waveguide defects and dirt using automatic optical inspection (AOI) and deep learning (DL) is the main focus of this study. The images samples of QCLs were collected from a laser manufacturing plant in Europe. Due to the lack of sufficient dirt and defect samples, automatic and manual data augmentation approaches were used to increase the number of images. A combination of an improved capsule neural network (WaferCaps) and convolutional neural network (CNN) based on parallel decision fusion is used to classify the samples. The output of these classifiers were combined based on rule-based selection algorithm that chooses the performance of the best classifier according to the class. The proposed approach was compared with the performance of standalone models, different state-of-the-art DL models such as CapsNet, ResNet-50, MobileNet, DenseNet, Xception and Inception-V3 and other machine learning (ML) models such as Support Vector Machine (SVM), decision tree, k-NN and Multi-layer Perceptron (MLP). The proposed approach outperformed them all with a validation accuracy of 98.5.
机译:对消费电子设备和电信的需求不断增长,预计将推动量子级联激光器(QCL)市场。QCL生产率的提高增加了生产失败和异常的可能性。使用自动光学检测(AOI)和深度学习(DL)检测波导缺陷和污垢是本研究的主要重点。QCL的图像样本是从欧洲的一家激光制造厂收集的。由于缺乏足够的污垢和缺陷样本,使用自动和手动数据增强方法来增加图像数量。采用改进的胶囊神经网络(WaferCaps)和基于并行决策融合的卷积神经网络(CNN)的组合对样本进行分类。这些分类器的输出基于基于规则的选择算法进行组合,该算法根据类选择最佳分类器的性能。将所提出的方法与独立模型、不同最先进的深度学习模型(如CapsNet、ResNet-50、MobileNet、DenseNet、Xception和Inception-V3)以及其他机器学习(ML)模型(如支持向量机(SVM)、决策树、k-NN和多层感知机(MLP))的性能进行了比较。所提方法的验证准确率为98.5%,优于所有方法。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号