首页> 外文期刊>Journal of geographical systems >Multidimensional economic indicators and multivariate functional principal component analysis (MFPCA) in a comparative study of countries’ competitiveness
【24h】

Multidimensional economic indicators and multivariate functional principal component analysis (MFPCA) in a comparative study of countries’ competitiveness

机译:多维经济指标与多元功能主成分分析(MFPCA)在国家竞争力比较研究中的应用

获取原文
获取原文并翻译 | 示例

摘要

Abstract The multivariate pluriformity and complexity of economic-geographic space (e.g., cities or countries) are reflected in their empirical multidimensional data structure with space–time characteristics. The need to reduce the multiple dimensions of an observation space is present in all social (and other) sciences seeking to identify basic patterns or key relations among critical indicators that characterize economic or social features of the phenomena concerned. For this purpose, multivariate statistics has developed an impressive toolbox, in which traditionally a prominent place is taken by the class of principal component analyses (PCA). This technique dates back to the beginning of the last century and is widely employed in empirical research aiming at reducing complexity in observation spaces toward manageable patterns of a smaller dimensionality. In the present study, we develop and present a new methodological contribution to in the PCA field, by shifting from conventional discrete static data to time-series data approximated by a continuous intertemporal curve reflecting the evolution of the socioeconomic data concerned. In this paper, the statistical foundation of this new approach, called multivariate functional principal component analysis (MFPCA), will be outlined and tested for a multivariate long-range data set on statistical indicators for several countries. The practical validity of the MFPCA method will be demonstrated by means of an application to the evolution of socioeconomic competitiveness (in this paper, we use the WEF definition of competitiveness, which is: “Competitiveness is the set of institutions, policies, and factors that determine the level of productivity of a country” WEF 2015) in different countries of the world, based on official World Economic Forum (WEF) data spanning the period 2008–2015. Our analysis brings to light interesting findings and differences compared to the initial, officially published WEF information.
机译:摘要 经济地理空间(如城市或国家)的多元多元性和复杂性反映在其具有时空特征的经验多维数据结构中。所有社会(和其他)科学都存在减少观察空间的多个维度的需求,这些科学试图确定表征相关现象的经济或社会特征的关键指标之间的基本模式或关键关系。为此,多元统计学开发了一个令人印象深刻的工具箱,其中传统上主成分分析(PCA)类占据了突出的位置。这种技术可以追溯到上世纪初,并被广泛用于实证研究,旨在将观察空间的复杂性降低到较小维度的可管理模式。在本研究中,我们通过从传统的离散静态数据转向由反映相关社会经济数据演变的连续跨期曲线近似的时间序列数据,在PCA领域发展并提出了一种新的方法论贡献。在本文中,将概述这种称为多变量功能主成分分析(MFPCA)的新方法的统计基础,并针对几个国家统计指标的多变量长期数据集进行测试。MFPCA方法的实际有效性将通过应用于社会经济竞争力的演变来证明(在本文中,我们使用世界经济论坛对竞争力的定义,即:“竞争力是决定一个国家生产力水平的制度,政策和因素的集合”WEF 2015)在世界不同国家, 基于世界经济论坛(WEF)2008-2015年期间的官方数据。我们的分析揭示了与最初正式发布的世界经济论坛信息相比的有趣发现和差异。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号