首页> 外文期刊>Mathematical Problems in Engineering: Theory, Methods and Applications >A Precision Marketing Strategy of e-Commerce Platform Based on Consumer Behavior Analysis in the Era of Big Data
【24h】

A Precision Marketing Strategy of e-Commerce Platform Based on Consumer Behavior Analysis in the Era of Big Data

机译:大数据时代基于消费者行为分析的电商平台精准营销策略

获取原文
获取原文并翻译 | 示例

摘要

In order to develop a more efficient and accurate marketing strategy for consumers’ purchase behavior, this paper establishes a user value model by modeling and learning the user historical data of e-commerce enterprises. The improved K-means algorithm is used to cluster the purchase behavior of users, and the customer value matrix is constructed from two dimensions of consumption frequency and average consumption amount. Finally, e-commerce users are classified into four categories by marking points. The test results show that the improved K-means algorithm is stable and efficient, and the analysis of user clustering characteristics is helpful to develop more accurate marketing strategies.
机译:为了制定更高效、更准确的消费者购买行为营销策略,本文通过对电子商务企业的用户历史数据进行建模和学习,建立了用户价值模型。采用改进的K-means算法对用户的购买行为进行聚类,从消费频率和平均消费金额两个维度构建客户价值矩阵。最后,电子商务用户按标记点分为四类。测试结果表明,改进的K-means算法稳定高效,对用户聚类特征的分析有助于制定更准确的营销策略。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号