【24h】

From the history of nitrided ferroalloys

机译:从氮化铁合金的历史

获取原文
获取外文期刊封面目录资料

摘要

© 2020 National University of Science and Technology MISIS. All rights reserved.The article considers research on the history of nitrided ferroalloys appearance and development of technologies for nitrogen-containing steels and ligatures. The most important advantages of nitrogen as an alloying element are its availability and almost unlimited reserves in nature. The technology of nitrogen extraction does not cause any harm to the environment and is not accompanied by the formation of waste. New technologies of nitrided ferroalloys and new compositions of nitrogen-containing ligatures emerged as a response to the creation of new grades of nitrogen-alloyed steels. At the same time, researchers in Europe, the United States, and the Soviet Union made the greatest contribution to the development of nitrided steel and ferroalloys technology. Nitrided ferrochrome emerged from the need for alloying stainless steels of various classes. Nitrided ferrovanadium was created for microalloying high-strength low-alloy steels. For nitrogen alloying of transformer steel, an alloying material based on silicon nitride was developed. Nitrogen-containing compositions based on manganese are universal alloying materials for a wide range of applications. Technologies of nitrided ferroalloys developed in the direction of creating compositions with the maximum nitrogen content with minimal consumption of material resources. Currently, technologies for direct introduction of nitrogen gas into liquid metal during out-of-furnace processing are being successfully developed. Alloying with its solid carriers remains a universal method for smelting nitrogen-containing steels. Nitrogen in nature occurs exclusively in a gaseous form, so for introduction to steel, it is necessary to fix it in the composition of a solid substance. At the same time, such a nitrogen-containing material must be compatible with the steel melt and technological in use. This problem is completely solved by the technology of self-propagating high-temperature synthesis (SHS), which allows obtaining composite ferroalloys based on nitrides, with properties that are unattainable for the furnace process.
机译:© 2020 国立科技大学-莫斯科国立钢铁合金学院保留所有权利。本文对氮化铁合金外观的历史研究以及含氮钢和结扎技术的发展进行了研究。氮作为合金元素最重要的优点是它的可用性和在自然界中几乎无限的储量。氮气提取技术不会对环境造成任何危害,也不会产生废物。氮化铁合金的新技术和含氮结扎的新成分应运而生,以应对新等级的氮合金钢的产生。同时,欧美、苏的研究人员对氮化钢和铁合金技术的发展做出了最大的贡献。氮化铬铁的出现源于对各种不锈钢合金化的需求。氮化钒铁用于微合金化高强度低合金钢。针对变压器钢的氮合金化,开发了一种基于氮化硅的合金化材料。基于锰的含氮组合物是通用合金材料,应用范围广泛。氮化铁合金技术朝着以最少的材料资源消耗创造具有最大氮含量的成分的方向发展。目前,在炉外加工过程中将氮气直接引入液态金属的技术正在成功开发中。与其固体载体合金化仍然是冶炼含氮钢的通用方法。氮在自然界中仅以气态形式存在,因此要引入钢,有必要将其固定在固体物质的成分中。同时,这种含氮材料必须与钢的熔体和使用中的工艺相容。自传播高温合成(SHS)技术完全解决了这个问题,该技术可以获得基于氮化物的复合铁合金,其性能是炉子工艺无法实现的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号