首页> 外文期刊>Numerical algorithms >A fast time two-mesh finite volume element algorithm for the nonlinear time-fractional coupled diffusion model
【24h】

A fast time two-mesh finite volume element algorithm for the nonlinear time-fractional coupled diffusion model

机译:一种用于非线性时间分数阶耦合扩散模型的快速时间双网格有限体积元算法

获取原文
获取原文并翻译 | 示例

摘要

In this work, a fast second-order finite volume element (FVE) algorithm is proposed to solve the nonlinear time-fractional coupled diffusion model based on the time two-mesh (TT-M) computing method. In this algorithm, the integer and RiemannLiouville fractional derivatives are approximated by the second-order backward difference formula and the WSGD formula respectively, the time interval is divided into coarse and fine meshes, then the three steps TT-M FVE algorithm is constructed by using the interpolation operator. The existence and uniqueness for the TT-M FVE algorithm are analyzed in detail, the asymptotically optimal a priori error estimates for variables u and v in the discrete L-infinity(L-2(Omega)) and L-2(H-1(Omega) norms are obtained. It is shown that when time coarse and fine mesh sizes satisfy tau(c) = O(tau(1/2)(f)), the fast algorithm can achieve the same accuracy as the FVE algorithm, and reduce more computational cost. Finally, some numerical results are given to demonstrate the efficiency of the proposed algorithm.
机译:该文提出一种快速二阶有限体积元(FVE)算法,用于求解基于时间二网格(TT-M)计算方法的非线性时间分数阶耦合扩散模型。该算法分别采用二阶后退差分公式和WSGD公式对整数和RiemannLiouville分数阶导数进行近似求,将时间间隔划分为粗网格和细网格,然后利用插值算子构造TT-M FVE三步算法。详细分析了TT-M FVE算法的存在性和唯一性,得到了离散L-无穷大(L-2(Omega))和L-2(H-1(Omega)范数中变量u和v的渐近最优先验误差估计。结果表明,当时间粗网格和细网格尺寸满足tau(c) = O(tau(1/2)(f))时,快速算法可以达到与FVE算法相同的精度,并降低更多的计算成本。最后,通过数值计算结果验证了所提算法的有效性。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号