首页> 外文期刊>Archives of Toxicology >Radiolabelling of engineered nanoparticles for in vitro and in vivo tracing applications using cyclotron accelerators.
【24h】

Radiolabelling of engineered nanoparticles for in vitro and in vivo tracing applications using cyclotron accelerators.

机译:使用回旋加速器进行体外和体内示踪应用的工程纳米颗粒的放射性标记。

获取原文
获取原文并翻译 | 示例
       

摘要

We present in this article an outline of some cyclotron-based irradiation techniques that can be used to directly radiolabel industrially manufactured nanoparticles, as well as two techniques for synthesis of labelled nanoparticles using cyclotron-generated radioactive precursor materials. These radiolabelled nanoparticles are suitable for a range of different in vitro and in vivo tracing studies of relevance to the field of nanotoxicology. A basic overview is given of the relevant physics of nuclear reactions regarding both ion-beam and neutron production of radioisotopes. The various issues that determine the practicality and usefulness of the different methods are discussed, including radioisotope yield, nuclear reaction kinetics, radiation and thermal damage, and radiolabel stability. Experimental details are presented regarding several techniques applied in our laboratories, including direct light-ion activation of dry nanoparticle samples, neutron activation of nanoparticles and suspensions using an ion-beam driven activator, spark-ignition generation of nanoparticle aerosols using activated electrode materials, and radiochemical synthesis of nanoparticles using cyclotron-produced isotopes. The application of these techniques is illustrated through short descriptions of some selected results thus far achieved. It is shown that these cyclotron-based methods offer a very useful range of options for nanoparticle radiolabelling despite some experimental difficulties associated with their application. For direct nanoparticle radiolabelling, if care is taken in choosing the experimental conditions applied, useful activity levels can be achieved in a wide range of nanoparticle types, without causing substantial thermal or radiation damage to the nanoparticle structure. Nanoparticle synthesis using radioactive precursors presents a different set of issues and offers a complementary and equally valid approach when laboratory generation of the nanoparticles is acceptable for the proposed studies, and where an appropriate radiolabel can be incorporated into the nanoparticles during synthesis.
机译:我们在本文中概述了一些可用于直接放射性标记工业生产的纳米粒子的基于回旋加速器的辐照技术,以及使用回旋加速器产生的放射性前体材料合成标记的纳米粒子的两种技术。这些放射性标记的纳米粒子适用于与纳米毒理学领域相关的一系列不同的体外和体内示踪研究。基本概述了有关放射性同位素的离子束和中子产生的核反应的相关物理原理。讨论了决定不同方法的实用性和实用性的各种问题,包括放射性同位素的产率,核反应动力学,辐射和热损伤以及放射性标记的稳定性。实验细节详细介绍了我们实验室中采用的几种技术,包括直接对干纳米颗粒样品进行离子激活,使用离子束驱动的活化剂对纳米颗粒和悬浮液进行中子活化,使用活化电极材料产生火花点火纳米颗粒气溶胶以及使用回旋加速器产生的同位素进行纳米粒子的放射化学合成。这些技术的应用通过到目前为止所获得的一些选定结果的简短描述来说明。结果表明,尽管基于回旋加速器的应用存在一些实验困难,但这些基于回旋加速器的方法为纳米粒子放射性标记提供了非常有用的选择范围。对于直接的纳米粒子放射性标记,如果在选择所应用的实验条件时要格外小心,则可以在各种类型的纳米粒子中实现有用的活性水平,而不会对纳米粒子的结构造成实质性的热或辐射损伤。当提议的研究可以接受实验室生成的纳米颗粒,并且在合成过程中可以将适当的放射性标记掺入纳米颗粒中时,使用放射性前体进行的纳米颗粒合成会带来不同的问题,并提供一种互补且同样有效的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号