首页> 外文期刊>Journal of Applied Mechanics: Transactions of the ASME >Dynamics of Necking and Fracture in Ductile Porous Materials
【24h】

Dynamics of Necking and Fracture in Ductile Porous Materials

机译:韧性多孔材料的颈缩和断裂动力学

获取原文
获取原文并翻译 | 示例

摘要

The onset of necking in dynamically expanding ductile rings is delayed due to the stabilizing effect of inertia, and with increasing expansion velocity, both the number of necks incepted and the number of fragments increase. In general, neck retardation is expected to delay fragmentation as necking is often the precursor to fracture. However, in porous ductile materials, it is possible that fracture can occur without significant necking. Thus, the objective of this work is to unravel the complex interaction of initial porosity and inertia on the onset of necking and fracture. To this end, we have carried out a series of finite element calculations of unit cells with sinusoidal geometric perturbations and varying levels of initial porosity under a wide range of dynamic loading conditions. In the calculations, the material is modeled using a constitutive framework that includes many of the hardening and softening mechanisms that are characteristics of ductile metallic materials, such as strain hardening, strain rate hardening, thermal softening, and damage-induced softening. The contribution of the inertia effect on the loading process is evaluated through a dimensionless parameter that combines the effects of loading rate, material properties, and unit cell size. Our results show that low initial porosity levels favor necking before fracture, and high initial porosity levels favor fracture before necking, especially at high loading rates where inertia effects delay the onset of necking. The finite element results are also compared with the predictions of linear stability analysis of necking instabilities in porous ductile materials.
机译:由于惯性的稳定作用,动态膨胀球墨铸环的颈缩开始延迟,并且随着膨胀速度的增加,颈部的开始数量和碎片数量都增加。一般来说,颈部发育迟缓有望延迟骨折,因为颈缩通常是骨折的前兆。然而,在多孔延展性材料中,有可能在没有明显颈缩的情况下发生断裂。因此,这项工作的目的是揭示初始孔隙率和惯性在颈缩和断裂开始时的复杂相互作用。为此,我们对在各种动态载荷条件下具有正弦几何扰动和不同初始孔隙率水平的晶胞进行了一系列有限元计算。在计算中,使用本构框架对材料进行建模,该框架包括许多作为延展性金属材料特征的硬化和软化机制,例如应变硬化、应变速率硬化、热软化和损伤诱导软化。惯性效应对加载过程的贡献通过一个无量纲参数进行评估,该参数结合了加载速率、材料属性和晶胞尺寸的影响。我们的结果表明,低初始孔隙率水平有利于断裂前的缩颈,而高初始孔隙率水平有利于缩颈前的断裂,特别是在惯性效应延迟颈缩开始的高加载速率下。将有限元结果与多孔延性材料颈缩不稳定性的线性稳定性分析预测结果进行了比较。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号