首页> 外文期刊>GPS Solutions >The long-term characteristics of GNSS signal distortion biases and their empirical corrections
【24h】

The long-term characteristics of GNSS signal distortion biases and their empirical corrections

机译:GNSS信号畸变偏差的长期特征及其经验修正

获取原文
获取原文并翻译 | 示例

摘要

Global Navigation Satellite System (GNSS) precise data processing depends on the accurate processing of various errors. However, the distorted GNSS live signals will result in systematic biases in pseudorange observations, namely, signal distortion bias (SDB). Studies have shown that GNSS SDBs are stable over a short time and can be well modeled according to receiver brands and models. Thus, we focus on analyzing the long-term characteristics of SDB and establishing their empirical corrections based on many GNSS observations from 2017 to 2019. The results show that the SDBs differ among different satellite system. For example, the SDBs are within +/- 1 ns for all the signals of GPS and BDS-2 while they are within +/- 0.5 ns for Galileo and QZSS. Also, most of the SDBs remained very stable even as the firmware version of the receiver was being upgraded during the 3 years. The portion of SDB STDs over 3-year series and within 0.1 ns are 93.2, 99.9, and 86.7 for GPS, Galileo, and QZSS, respectively. As for BDS-2, the SDB STDs within 0.1 ns and 0.2 ns are 70.0 and 96.8 due to the poor quality of pseudorange observations. Thus, the estimated GNSS SDBs are given as constant values for each satellite-receiver-group pair and signals in SINEX BIAS format. The validations show that both pseudorange residuals and STEC extraction of zero-baselines show about 1 ns systematic biases without SDB corrections. However, the RMS of pseudorange residuals decreases by 28.26 to 51.18 while the RMS of double-differenced STEC decreases by 12.5 to 49.2 for different satellite systems with SDB corrections. The results from 2017 to 2019 validate that most GNSS SDBs could be treated as constants if there is no update of satellite and receiver hardware. Also, it should be noted that SDB corrections may not be applicable for individual satellites and receivers when there are satellite signal fault or flex power. Therefore, it should be routine to calibrate the GNSS SDBs with the replacement of satellite and update of receiver brands and models.
机译:全球导航卫星系统(GNSS)的精确数据处理依赖于对各种误差的准确处理。然而,失真的GNSS实时信号会导致伪距观测出现系统性偏差,即信号失真偏差(SDB)。研究表明,GNSS SDB在短时间内是稳定的,可以根据接收机品牌和型号进行良好的建模。因此,本文重点分析了SDB的长期特征,并基于2017—2019年GNSS的多次观测建立了其经验修正。结果表明:不同卫星系统之间的SDB存在差异。例如,GPS 和 BDS-2 的所有信号的 SDB 都在 +/- 1 ns 以内,而 Galileo 和 QZSS 的 SDB 在 +/- 0.5 ns 以内。此外,即使在 3 年内升级接收器的固件版本,大多数 SDB 也保持非常稳定。GPS、Galileo 和 QZSS 在 3 年系列和 0.1 ns 范围内的 SDB STD 比例分别为 93.2%、99.9% 和 86.7%。对于BDS-2,由于伪距观测质量较差,0.1 ns和0.2 ns内的SDB STD分别为70.0%和96.8%。因此,估计的GNSS SDB以SINEX BIAS格式给出每个卫星-接收机-组对和信号的常数值。验证表明,在没有SDB校正的情况下,伪距残差和STEC提取零基线都显示出约1 ns的系统偏差。然而,伪距残差的RMS下降了28.26至51。18%,而双差分STEC的RMS下降了12.5%至49.2%。2017 年至 2019 年的结果证实,如果没有卫星和接收机硬件的更新,大多数 GNSS SDB 可以被视为常量。此外,应该注意的是,当存在卫星信号故障或弯曲功率时,SDB 校正可能不适用于单个卫星和接收器。因此,通过更换卫星和更新接收机品牌和型号来校准 GNSS SDB 应该是例行公事。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号