首页> 外文期刊>Journal of Photocatalysis >Enhancing Electrocatalytic N 2 Conversion to NH 3 by MnO 2 Ultralong Nanowires with Oxygen Vacancies
【24h】

Enhancing Electrocatalytic N 2 Conversion to NH 3 by MnO 2 Ultralong Nanowires with Oxygen Vacancies

机译:氧空位MnO 2超长纳米线增强电催化N 2向NH 3的转化

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Background: At present, industrial synthesis of NH 3 mainly relies on the Haber-Bosch process, which is characterized by harsh reaction conditions and high energy consumption. Electrochemical nitrogen reduction is considered to be a mild and sustainable alternative method for producing NH 3 , but efficient electrocatalyst under ambient conditions is the prerequisite for NH 3 production. Objective: To demonstrate that CP@MnO 2 ultralong nanowires are a highly-efficient electrocatalyst for N 2 reduction reaction (NRR) under ambient conditions. Methods: The α-phase MnO 2 synthesized by one-step hydrothermal method has an ultralong nanowires structure and oxygen vacancy defects. The catalysts were characterized by XRD, TEM, XPS, etc. The produced NH 3 was estimated by indophenol blue method by UV-vis absorption spectra. Results: Such catalyst attains high Faradaic efficiency (FE) of 8.8 and a large NH 3 yield of 1.13×10 ?10 mol cm ?2 s ?1 at ?0.7 V versus reversible hydrogen electrode in 0.1 M Na 2 SO 4 . In addition, the catalyst also shows high electrochemical stability and selectivity for NH 3 formation. Conclusion: MnO 2 ultralong nanowires can expose higher density of active sites and the spontaneously formed oxygen vacancies can manipulate the electronic structure of manganese oxides and provide coordination unsaturation sites (CUS) to enhance the adsorption of N 2 , which is the main reason for the high activity of the catalyst.
机译:背景:目前,NH的工业合成3主要依赖,哈勃-博施方法特点是苛刻的反应条件和高能源消耗。被认为是一种温和而减少可持续生产NH 3的替代方法,但有效electrocatalyst环境下条件是NH 3的先决条件生产。2超长纳米线是一种高效electrocatalyst N 2还原反应(NRR)在环境条件下。MnO 2通过一步水热方法合成有一个超长纳米线结构和氧气空位缺陷。通过XRD、TEM、XPS等。估计靛酚蓝法通过紫外可见吸收光谱。达到和感应电流的效率高(FE)的8.8%大型NH 3收益率为1.13×10 ? 10摩尔厘米? 2 s ? 1在哪里? 0.7 V和可逆氢电极0.1 Na 2 4。显示了较高的电化学稳定性和选择性NH 3形成。超长纳米线可以暴露更高的密度活动网站和自发形成的氧职位空缺可以操纵电子结构锰氧化物和提供协调未饱和的网站(CUS)提高吸附的N 2,这是主要原因催化剂的活性高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号