首页> 外文期刊>Journal of Photocatalysis >Enhancing Electrocatalytic N 2 Conversion to NH 3 by MnO 2 Ultralong Nanowires with Oxygen Vacancies
【24h】

Enhancing Electrocatalytic N 2 Conversion to NH 3 by MnO 2 Ultralong Nanowires with Oxygen Vacancies

机译:氧空位MnO 2超长纳米线增强电催化N 2向NH 3的转化

获取原文
获取外文期刊封面目录资料

摘要

Background: At present, industrial synthesis of NH 3 mainly relies on the Haber-Bosch process, which is characterized by harsh reaction conditions and high energy consumption. Electrochemical nitrogen reduction is considered to be a mild and sustainable alternative method for producing NH 3 , but efficient electrocatalyst under ambient conditions is the prerequisite for NH 3 production. Objective: To demonstrate that CP@MnO 2 ultralong nanowires are a highly-efficient electrocatalyst for N 2 reduction reaction (NRR) under ambient conditions. Methods: The α-phase MnO 2 synthesized by one-step hydrothermal method has an ultralong nanowires structure and oxygen vacancy defects. The catalysts were characterized by XRD, TEM, XPS, etc. The produced NH 3 was estimated by indophenol blue method by UV-vis absorption spectra. Results: Such catalyst attains high Faradaic efficiency (FE) of 8.8 and a large NH 3 yield of 1.13×10 −10 mol cm −2 s −1 at −0.7 V versus reversible hydrogen electrode in 0.1 M Na 2 SO 4 . In addition, the catalyst also shows high electrochemical stability and selectivity for NH 3 formation. Conclusion: MnO 2 ultralong nanowires can expose higher density of active sites and the spontaneously formed oxygen vacancies can manipulate the electronic structure of manganese oxides and provide coordination unsaturation sites (CUS) to enhance the adsorption of N 2 , which is the main reason for the high activity of the catalyst.
机译:背景:目前,NH 3的工业合成主要依靠Haber-Bosch工艺,其特点是反应条件苛刻,能耗高。电化学降氮被认为是生产NH 3的一种温和且可持续的替代方法,但在环境条件下的高效电催化剂是生产NH 3的先决条件。目的:证明CP@MnO 2超长纳米线是常温条件下N2还原反应(NRR)的高效电催化剂。方法:一步水热法合成的α相MnO 2具有超长纳米线结构和氧空位缺陷。采用XRD、TEM、XPS等对催化剂进行了表征。采用吲哚酚蓝法,通过紫外-可见吸收光谱对产生的NH 3进行估算。结果:在0.7 V下,与0.1 M Na 2 SO 4中的可逆氢电极相比,该催化剂在−0.7 V下获得了8.8%的高法拉第效率(FE)和1.13×10 −10 mol cm −2 s −1的高NH 3产率。此外,该催化剂还表现出较高的电化学稳定性和对NH3形成的选择性。结论:MnO 2超长纳米线可以暴露出更高密度的活性位点,自发形成的氧空位可以调控锰氧化物的电子结构,提供配位不饱和位点(CUS)来增强对N2的吸附,这是催化剂活性高的主要原因。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号