首页> 外文期刊>ACM SIGPLAN Notices: A Monthly Publication of the Special Interest Group on Programming Languages >Proof Search for Propositional Abstract Separation Logics via Labelled Sequents
【24h】

Proof Search for Propositional Abstract Separation Logics via Labelled Sequents

机译:寻找证明命题抽象分离通过标记逻辑结果

获取原文
获取原文并翻译 | 示例

摘要

separation logics are a family of extensions of Hoare logic for reasoning about programs that mutate memory. These logics are “abstract” because they are independent of any particular concrete memory model. Their assertion languages, called propositional abstract separation logics, extend the logic of (Boolean) Bunched Implications (BBI) in various ways. We develop a modular proof theory for various propositional abstract separation logics using cut-free labelled sequent calculi. We first extend the cut-fee labelled sequent calculus for BBI of Hóu et al to handle Calcagno et al’s original logic of separation algebras by adding sound rules for partial-determinism and cancellativity, while preserving cut-elimination. We prove the completeness of our calculus via a sound intermediate calculus that enables us to construct counter-models from the failure to find a proof. We then capture other propositional abstract separation logics by adding sound rules for indivisible unit and disjointness, while maintaining completeness and cut-elimination. We present a theorem prover based on our labelled calculus for these logics.
机译:逻辑是一个扩展的家庭分离Hoare逻辑推理程序变异的记忆。因为他们是独立于任何特定的具体的内存模型。称为抽象分离命题逻辑,扩展的逻辑(布尔)集中影响(BBI)以不同的方式。模块化理论对各种命题证明使用“抽象逻辑分离将连续的结石。cut-fee贴上后继微积分BBI侯等处理Calcagno等最初的逻辑通过添加声音规则分离的代数partial-determinism cancellativity,保留cut-elimination。通过良好的完整性的微积分使我们中间微积分构建counter-models从失败中找到一个证明。通过添加声音规则抽象逻辑分离不可分割的单位和剥离,而保持完整性和cut-elimination。现在一个定理验证基于我们的标签这些逻辑演算。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号