首页> 外文期刊>Archiv der Mathematik >Asymptotic behavior of manifolds without conjugate points
【24h】

Asymptotic behavior of manifolds without conjugate points

机译:没有共轭点的流形的渐近行为

获取原文
获取原文并翻译 | 示例
           

摘要

Let M be a complete Riemannian manifold. M has no conjugate points if in its universal covering space any two points can be joined by a unique geodesic. If the sectional curvature is nonpositive, then there are no conjugate points. The converse is not true. However a manifold without conjugate points enjoys many interesting properties of nonpositively curved manifold. For instance, E. Hopf proved that a 2-dimensional torus T2 without conjugate points is flat. It was proved by Avez [1] that this is still true for higher dimensional torus under the stronger assumption of no focal points. However it is still an open question for the general case of no conjugate points. In connection of this problem, and also on its own interest, the asymptotic behavior of geodesic rays in a simply connected complete manifold without conjugate points has been studied [8], [9], [10]. The asymptotic behavior of a ray is related to the so called Busemann function, which is in a sense a limit function of the distance functions from the points on the ray. The Busemann function is C'-differentiable [8] and in the case of nonpositive curvature it is C2-differentiable [5], [13]. The most important tool in the study of these problems has been stable Jacobi field, which ; is a solution of the Jacobi equation satisfying some boundary conditions. We will show that i the Busemann function is C2-differentiable if the stable Jacobi tensor has a certain continuity property. There are examples of manifolds without conjugate points which do not have this continuity [2]. This example however does not rule out the possibility of C2-differentiability without the continuity of the stable Jacobi tensor. It is not yet clear what can be the optimal condition for the differentiability of the Busemann function.
机译:令M为完全黎曼流形。如果M的通用覆盖空间中的任意两个点可以通过唯一的测地线连接在一起,则M没有共轭点。如果截面曲率是非正值,则没有共轭点。反之则不正确。但是,没有共轭点的流形具有非正曲形流形的许多有趣特性。例如,霍普夫(E. Hopf)证明没有共轭点的二维圆环T2是平坦的。 Avez [1]证明,在没有焦点的更强假设下,高维圆环仍然适用。但是,对于没有共轭点的一般情况,这仍然是一个悬而未决的问题。关于这个问题,也出于自己的利益,已经研究了在没有共轭点的简单连接的完整流形中测地线的渐近行为[8],[9],[10]。射线的渐近行为与所谓的Busemann函数有关,Busemann函数在某种意义上是与射线上的点的距离函数的极限函数。 Busemann函数是C'可微的[8],在非正曲率的情况下,它是C2可微的[5],[13]。研究这些问题最重要的工具是稳定的Jacobi场。是满足某些边界条件的Jacobi方程的解。我们将证明,如果稳定的Jacobi张量具有一定的连续性,则Busemann函数是C2可微的。有一些没有共轭点的流形不具有这种连续性的例子[2]。但是,此示例不排除没有稳定Jacobi张量连续性的C2可微性的可能性。尚不清楚Busemann函数微分的最佳条件是什么。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号