...
首页> 外文期刊>Applied Organometallic Chemistry >Mechanism of multi-metal(loid) methylation and hydride generation by methylcobalamin and cob(I)alamin: a side reaction of methanogenesis
【24h】

Mechanism of multi-metal(loid) methylation and hydride generation by methylcobalamin and cob(I)alamin: a side reaction of methanogenesis

机译:甲基钴胺素和钴(I)丙胺生成多金属(甲基)甲基化和氢化物的机理:甲烷生成的副反应

获取原文
获取原文并翻译 | 示例
           

摘要

Metal(loid)s are subject to many transformation processes in the environment, such as oxidation, reduction, methylation and hydride generation, predominantly accomplished by prokaryotes. Since these widespread processes affect the bioavailability and toxicity of metal(loid)s to a large extent, the investigation of their formation is of high relevance. Methanogenic Archaea are capable of methylating and hydrogenating Group 15 and 16 metal(loid)s arsenic, selenium, antimony, tellurium, and bismuth due to side reactions between central methanogenic cofactors, methylcobalamin (CH3Cob(III)) and cob(I)alamin (Cob(I)). Here, we present systematic mechanistic studies on methylation and hydride generation of Group 15 and 16 metal(loid)s by CH3Cob(III) and Cob(I). Pentavalent arsenical species showed neither methylation nor reduction as determined by using a newly developed oxidation state specific hydride generation technique, which allows direct determination of tri- and pentavalent arsenic species in a single batch. In contrast, efficient methylation of trivalent species without a change in oxidation state indicated that the methyl transfer does not proceed via a Challenger-like oxidative methylation, but via a non-oxidative methylation. Our findings also point towards a similar mechanism for antimony, bismuth, selenium, and tellurium. Overall, we suggest that the transfer of a methyl group does not involve a free reactive species, such as a radical, but instead is transferred either in a concerted nucleophilic substitution or in a caged radical mechanism. For hydride generation, we propose the intermediate formation of hydridocobalamin, transferring a hydride ion to the metal(loid)s.
机译:金属(金属)在环境中会经历许多转化过程,例如氧化,还原,甲基化和氢化物生成,这些过程主要由原核生物完成。由于这些广泛的过程在很大程度上影响金属(金属)的生物利用度和毒性,因此对其形成的研究具有高度的相关性。由于中央产甲烷辅因子甲基钴胺素(CH3Cob(III))和Cob(I)丙氨酸( Cob(I))。在这里,我们目前对CH3Cob(III)和Cob(I)的15和16族金属(金属)的甲基化和氢化物生成的系统机理研究。五价砷物质既未显示甲基化也未还原,这是通过使用新开发的氧化态特异性氢化物发生技术确定的,该技术可直接测定单个批次中的三价和五价砷物质。相反,三价物质的有效甲基化没有改变氧化态表明甲基转移不是通过类似挑战者的氧化甲基化进行的,而是通过非氧化甲基化进行的。我们的发现还指出了锑,铋,硒和碲的类似机理。总的来说,我们建议甲基的转移不涉及游离的反应性物质,例如自由基,而是以协同的亲核取代或笼状自由基机制转移。对于氢化物的产生,我们提出了氢化钴胺素的中间形成,将氢化物离子转移到金属(金属)上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号