首页> 美国卫生研究院文献>Applied and Environmental Microbiology >Connection between Multimetal(loid) Methylation in Methanoarchaea and Central Intermediates of Methanogenesis
【2h】

Connection between Multimetal(loid) Methylation in Methanoarchaea and Central Intermediates of Methanogenesis

机译:甲烷古菌中的多金属(甲基)甲基化与甲烷生成的中心中间体之间的联系

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In spite of the significant impact of biomethylation on the mobility and toxicity of metals and metalloids in the environment, little is known about the biological formation of these methylated metal(loid) compounds. While element-specific methyltransferases have been isolated for arsenic, the striking versatility of methanoarchaea to methylate numerous metal(loid)s, including rare elements like bismuth, is still not understood. Here, we demonstrate that the same metal(loid)s (arsenic, selenium, antimony, tellurium, and bismuth) that are methylated by Methanosarcina mazei in vivo are also methylated by in vitro assays with purified recombinant MtaA, a methyltransferase catalyzing the methyl transfer from methylcobalamin [CH3Cob(III)] to 2-mercaptoethanesulfonic acid (CoM) in methylotrophic methanogenesis. Detailed studies revealed that cob(I)alamin [Cob(I)], formed by MtaA-catalyzed demethylation of CH3Cob(III), is the causative agent for the multimetal(loid) methylation observed. Moreover, Cob(I) is also capable of metal(loid) hydride generation. Global transcriptome profiling of M. mazei cultures exposed to bismuth did not reveal induced methyltransferase systems but upregulated regeneration of methanogenic cofactors in the presence of bismuth. Thus, we conclude that the multimetal(loid) methylation in vivo is attributed to side reactions of CH3Cob(III) with reduced cofactors formed in methanogenesis. The close connection between metal(loid) methylation and methanogenesis explains the general capability of methanoarchaea to methylate metal(loid)s.
机译:尽管生物甲基化对金属和准金属在环境中的迁移率和毒性有重大影响,但对这些甲基化金属(金属)化合物的生物形成知之甚少。尽管已经分离出了砷的元素特异性甲基转移酶,但仍不清楚甲基甲烷古细菌具有惊人的通用性,可以使许多金属(甲基)甲基化,包括铋等稀有元素。在这里,我们证明了通过纯化重组MtaA的体外测定,也可以通过体外测定甲基化甲烷化甲烷甲烷化甲烷的相同金属(砷,硒,锑,碲和铋)也被甲基化,这是一种催化甲基转移的甲基转移酶。从甲基钴胺素[CH3Cob(III)]到2-巯基乙磺酸(CoM)的甲基营养型甲烷生成。详细的研究表明,由MtaA催化的CH3Cob(III)脱甲基形成的Cob(I)阿拉明[Cob(I)]是观察到的多金属(甲基)甲基化的诱因。此外,Cob(I)还能够生成金属氢化物。暴露于铋的马氏甲烷八叠球菌培养物的整体转录组谱分析未显示诱导的甲基转移酶系统,但在存在铋的情况下甲烷生成辅因子的再生上调。因此,我们得出结论,体内多金属(甲基)甲基化归因于CH3Cob(III)与甲烷生成中形成的减少的辅因子的副反应。金属(金属)甲基化与甲烷生成之间的紧密联系解释了甲烷古菌对金属(金属)甲基化的一般能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号