...
首页> 外文期刊>Bone >Ultra-structural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice
【24h】

Ultra-structural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice

机译:尽管成骨不全症小鼠中矿化度高,但超微结构缺陷仍会导致骨基质硬度降低

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Bone is a complex material with a hierarchical multi-scale organization from the molecule to the organ scale. The genetic bone disease, osteogenesis imperfecta, is primarily caused by mutations in the collagen type I genes, resulting in bone fragility. Because the basis of the disease is molecular with ramifications at the whole bone level, it provides a platform for investigating the relationship between structure, composition, and mechanics throughout the hierarchy. Prior studies have individually shown that OI leads to: 1. increased bone mineralization, 2. decreased elastic modulus, and 3. smaller apatite crystal size. However, these have not been studied together and the mechanism for how mineral structure influences tissue mechanics has not been identified. This lack of understanding inhibits the development of more accurate models and therapies. To address this research gap, we used a mouse model of the disease (oim) to measure these outcomes together in order to propose an underlying mechanism for the changes in properties. Our main finding was that despite increased mineralization, oim bones have lower stiffness that may result from the poorly organized mineral matrix with significantly smaller, highly packed and disoriented apatite crystals. Using a composite framework, we interpret the lower oim bone matrix elasticity observed as the result of a change in the aspect ratio of apatite crystals and a disruption of the crystal connectivity.
机译:骨骼是一种复杂的材料,具有从分子到器官尺度的分级多尺度组织。遗传性骨疾病,成骨不全症,主要是由I型胶原基因突变引起的,导致骨骼脆弱。由于该疾病的基础是在整个骨骼水平上具有分枝的分子,因此它提供了一个平台,可用于研究整个层次结构,组成和力学之间的关系。先前的研究单独显示OI会导致:1.骨矿化增加; 2.弹性模量降低; 3.磷灰石晶体尺寸变小。然而,这些还没有一起研究,并且还没有发现矿物结构如何影响组织力学的机理。缺乏了解阻碍了更精确的模型和疗法的发展。为了解决这一研究空白,我们使用了该疾病的小鼠模型(oim)来共同测量这些结果,以便为性质改变提出潜在的机制。我们的主要发现是,尽管矿化作用增加,但oim骨骼的硬度较低,这可能是由于组织不佳的矿物基体以及明显较小的,高度堆积的和错位的磷灰石晶体造成的。使用复合框架,我们解释了磷灰石晶体长径比变化和晶体连通性破坏的结果,观察到了较低的oim骨基质弹性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号