首页> 外文期刊>Aquatic geochemistry >The role of one- and two-electron transfer reactions in forming thermodynamically unstable intermediates as barriers in multi-electron redox reactions
【24h】

The role of one- and two-electron transfer reactions in forming thermodynamically unstable intermediates as barriers in multi-electron redox reactions

机译:一电子转移和二电子转移反应在形成热力学不稳定中间体中的作用,作为多电子氧化还原反应的障碍

获取原文
获取原文并翻译 | 示例
           

摘要

In the aquatic geochemical literature, a redox half-reaction is normally written for a multi-electron process (n > 2); e. g., sulfide oxidation to sulfate. When coupling two multi-electron half-reactions, thermodynamic calculations indicate possible reactivity, and the coupled half-reactions are considered favorable even when there is a known barrier to reactivity. Thermodynamic calculations should be done for one or two-electron transfer steps and then compared with known reactivity to determine the rate controlling step in a reaction pathway. Here, thermodynamic calculations are presented for selected reactions for compounds of C, O, N, S, Fe, Mn and Cu. Calculations predict reactivity barriers and agree with one previous analysis showing the first step in reducing O_2 to O_2~- with Fe~(2+) and Mn~(2+) is rate limiting. Similar problems occur for the first electron transfer step in these metals reducing NO_3~-, but if reactive oxygen species form or if two-electron transfer steps with O atom transfer occur, reactivity becomes favorable. H_2S and NH_4~+ oxidation in a one-electron transfer step by O_2 is also not favorable unless activation of oxygen can occur. H_2S oxidation by Cu~(2+), Fe(III) and Mn(III, IV) phases in two-electron transfer steps is favorable but not in one-electron steps indicating that (nano)particles with bands of orbitals are needed to accept two electrons from H_2S. NH_4~+ oxidation by Fe(III) and Mn(III, IV) phases is generally not favorable for both one- and two-electron transfer steps, but their reaction with hydroxylamine and hydrazine to form N_2O and N_2, respectively, is favorable. The anammox reaction using hydroxylamine via nitrite reduction is the most favorable for NH_4~+ oxidation. Other chemical processes including photosynthesis and chemosynthesis are considered for these element-element transformations.
机译:在水生地球化学文献中,氧化还原半反应通常写为多电子过程(n> 2)。 e。例如,硫化物氧化成硫酸盐。当耦合两个多电子半反应时,热力学计算表明可能的反应性,并且即使存在已知的反应性障碍,耦合的半反应也被认为是有利的。应该对一个或两个电子转移步骤进行热力学计算,然后将其与已知的反应性进行比较,以确定反应路径中的速率控制步骤。在此,介绍了针对C,O,N,S,Fe,Mn和Cu化合物的选定反应的热力学计算。计算预测了反应性障碍并与先前的分析一致,表明用Fe〜(2+)和Mn〜(2+)将O_2还原为O_2〜-的第一步是限速的。这些金属中的第一电子转移步骤会发生类似的问题,从而还原NO_3〜-,但是如果形成活性氧或如果发生带有O原子转移的两个电子转移步骤,则反应性将变得良好。除非可以发生氧的活化,否则在O_2的单电子转移步骤中H_2S和NH_4〜+的氧化也是不利的。在两个电子转移步骤中通过Cu〜(2 +),Fe(III)和Mn(III,IV)相进行H_2S氧化是有利的,但在一个电子步骤中则不利,这表明需要具有轨道带的(纳米)粒子从H_2S接受两个电子。 Fe(III)和Mn(III,IV)相进行的NH_4〜+氧化通常对单电子和两电子转移步骤均不利,但它们分别与羟胺和肼反应形成N_2O和N_2的反应是有利的。使用羟胺通过亚硝酸盐还原的厌氧氨氧化反应最有利于NH_4〜+氧化。对于这些元素-元素转化,还考虑了其​​他化学过程,包括光合作用和化学合成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号