...
首页> 外文期刊>Antioxidants and redox signalling >Redox regulation in plant immune function
【24h】

Redox regulation in plant immune function

机译:氧化还原调节植物免疫功能

获取原文
获取原文并翻译 | 示例

摘要

Significance: Production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) occurs rapidly in response to attempted pathogen invasion of potential host plants. Such reduction-oxidation (redox) changes are sensed and transmitted to engage immune function, including the hypersensitive response, a programmed execution of challenged plant cells. Recent Advances: Pathogen elicitors trigger changes in calcium that are sensed by calmodulin, calmodulin-like proteins, and calcium-dependent protein kinases, which activate ROS and RNS production. The ROS and RNS production is compartmentalized within the cell and occurs through multiple routes. Mitogen-activated protein kinase (MAPK) cascades are engaged upstream and downstream of ROS and nitric oxide (NO) production. NO is increasingly recognized as a key signaling molecule, regulating downstream protein function through S-nitrosylation, the addition of an NO moiety to a reactive cysteine thiol. Critical Issues: How multiple sources of ROS and RNS are coordinated is unclear. The putative protein sensors that detect and translate fluxes in ROS and RNS into differential gene expression are obscure. Protein tyrosine nitration following reaction of peroxynitrite with tyrosine residues has been proposed as another signaling mechanism or as a marker leading to protein degradation, but the reversibility remains to be established. Future Directions: Research is needed to identify the full spectrum of NO-modified proteins with special emphasis on redox-activated transcription factors and their cognate target genes. A systems approach will be required to uncover the complexities integral to redox regulation of MAPK cascades, transcription factors, and defense genes through the combined effects of calcium, phosphorylation, S-nitrosylation, and protein tyrosine nitration.
机译:意义:活性氧物种(ROS)和活性氮物种(RNS)的产生迅速发生,以响应潜在病原体入侵病原体的企图。感测到这种还原-氧化(氧化还原)变化并传递以参与免疫功能,包括超敏反应,受攻击植物细胞的程序执行。最新进展:病原体引发物触发钙调节蛋白,钙调节蛋白样蛋白和钙依赖性蛋白激酶检测到的钙变化,从而激活ROS和RNS的产生。 ROS和RNS的产生在细胞内是分隔的,并通过多种途径发生。丝裂原激活的蛋白激酶(MAPK)级联参与ROS和一氧化氮(NO)生产的上游和下游。 NO被越来越多地认为是关键的信号分子,通过S-亚硝基化,向反应性半胱氨酸硫醇中添加NO部分来调节下游蛋白质的功能。关键问题:ROS和RNS的多种来源如何协调尚不清楚。用于检测ROS和RNS中的通量并将其转换为差异基因表达的假定蛋白质传感器是不清楚的。已提出过氧亚硝酸盐与酪氨酸残基反应后蛋白质酪氨酸硝化是另一种信号传导机制或导致蛋白质降解的标志物,但可逆性仍有待建立。未来方向:需要进行研究以鉴定出NO修饰蛋白的全谱,尤其着重于氧化还原激活的转录因子及其同源靶基因。通过钙,磷酸化,S-亚硝化和蛋白质酪氨酸硝化的综合作用,将需要一种系统方法来揭示MAPK级联,转录因子和防御基因的氧化还原调节所必需的复杂性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号