首页> 外文期刊>Recent advances in computer science and communications >Computing Salient Feature Points of 3D Model Based on Geodesic Distance and Decision Graph Clustering
【24h】

Computing Salient Feature Points of 3D Model Based on Geodesic Distance and Decision Graph Clustering

机译:基于计算凸特征点的三维模型在测地距离和决策图聚类

获取原文
获取原文并翻译 | 示例

摘要

Introduction: Computing Salient Feature Points (SFP) of 3D models has important application value in the field of computer graphics. In order to extract the SFP more effectively,a novel SFP computing algorithm based on geodesic distance and decision graph clustering is proposed. Methods: Firstly,the geodesic distance of model vertices is calculated based on the heat conduction equation,and then the average geodesic distance and importance weight of vertices are calculated. Finally,the decision graph clustering method is used to calculate the decision graph of model vertices. Results and Discussion: 3D models in SHREC 2011 dataset are selected to test the proposed algorithm. Compared with the existing algorithms,this method calculates the SFP of the 3D model from a global perspective. Results show that it is not affected by model posture and noise. Conclusion: Our method maps the SFP of the 3D model to the 2D decision-making diagram,which simplifies the calculation process of SFP,improves the calculation accuracy and possesses strong robustness.
机译:作品简介:计算凸特征点(SFP)的3 d模型有着重要的应用在计算机图形学领域的价值。更有效地提取SFP,小说SFP基于测地距离的计算算法和决策图聚类算法。方法:首先,模型的测地距离基于热计算顶点传导方程,然后平均测地线距离和重量顶点的重要性计算。方法是用来计算的决策图模型的顶点。2011年SHREC数据集选择测试提出的算法。算法,该方法计算的SFP三维模型从全球视角。它不受模型姿态的影响噪音。三维模型的二维决策图,简化了计算过程SFP,提高计算精度具有强鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号