首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >Process simulation and CFD calculations for the development of an innovative baled biomass-fired combustion chamber
【24h】

Process simulation and CFD calculations for the development of an innovative baled biomass-fired combustion chamber

机译:用于开发创新的打包生物质燃烧室的过程仿真和CFD计算

获取原文
获取原文并翻译 | 示例
       

摘要

This present work shows that the joint application of process simulation and computational fluid dynamics (CFD) is a helpful tool for the design and optimisation of complex and innovative concepts in chemical engineering practice. The application of these tools to the presented concept of a baled biomass-fired combustion chamber enables the optimisation of operation parameters such as the flue gas recirculation rate and excess air supply. Moreover numerous variations of the detailed engineering of the involved apparatuses can be simulated before realisation. The major goals comprise the maximisation of the thermal efficiency and the reduction of gaseous and particulate matter emissions. To meet these goals it is rather important to have available validated mathematical models with sharpened model parameters. Therefore the presented model approaches have been validated and refined using results from extensive combustion experiments conducted at an existing 2 MW pilot plant. Several modelling approaches are presented that especially focus on the treatment of the heterogeneous combustion and prediction of gaseous emissions such as carbon monoxide and nitrogen oxide. With validated models on a sound physical basis, process simulation and computational fluid dynamics enable a significant reduction of the development costs and the time-to-market of innovative chemical engineering concepts. (C) 2006 Elsevier Ltd. All rights reserved.
机译:本工作表明,过程仿真和计算流体动力学(CFD)的联合应用是在化学工程实践中设计和优化复杂创新概念的有用工具。将这些工具应用到提出的打包生物质燃烧室的概念上可以优化操作参数,例如烟气再循环率和过量空气供应。此外,可以在实现之前模拟所涉及设备的详细工程的多种变型。主要目标包括最大程度地提高热效率以及减少气态和颗粒物排放。为了达到这些目标,拥有经过验证的数学模型和更清晰的模型参数非常重要。因此,所提出的模型方法已经通过在现有2 MW中试工厂进行的大量燃烧实验的结果进行了验证和完善。提出了几种建模方法,这些方法特别关注于异质燃烧的处理和气体排放物(例如一氧化碳和氮氧化物)的预测。凭借在可靠的物理基础上经过验证的模型,过程仿真和计算流体动力学可以大大降低开发成本和创新化学工程概念的上市时间。 (C)2006 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号