...
首页> 外文期刊>Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications >Fe3+ doping promoted N-2 photofixation ability of honeycombed graphitic carbon nitride: The experimental and density functional theory simulation analysis
【24h】

Fe3+ doping promoted N-2 photofixation ability of honeycombed graphitic carbon nitride: The experimental and density functional theory simulation analysis

机译:Fe3 +掺杂促进蜂窝状石墨碳氮化物的N-2光固定能力:实验和密度泛函理论模拟分析

获取原文
获取原文并翻译 | 示例
           

摘要

Honeycombed iron doped graphitic carbon nitride with outstanding N-2 photofixation ability is synthesized in this work. Characterization results indicate that Fe3+ inserts at the interstitial position and is stabilized in the electron-rich g-C3N4 through the coordinative Fe-N bonds. Fe3+ sites can chemisorb and activate N-2 molecules, then transfer the photogenerated electrons from the g-C3N4 to adsorbed N-2 molecules. Fe0.05-CN displays the highest NH4+ generation rate, which is approximately 13.5-fold higher than that of neat g-C3N4. Density functional theory simulations prove the N-2 activation effect of Fe3+ sites due to the high adsorption energy and prolonged N equivalent to N bond. Charge density difference result confirms the electrons transfer process from the Fe3+ doping sites to N-2 molecule. DOS results indicate that the electrons of sigma(g)2p orbital (HOMO) in nitrogen atom is delocalized significantly when N-2 adsorbed on Fe3+ doping sites, leading to its orbital energy almost connects to that of pi g*2p orbital (LUMO), which confirming that Fe3+ doping sites can activate the N-2 molecule effectively. The Mulliken charge of nitrogen is -3.1 when the N-2 adsorbed on Fe3+ doping sites, indicating that N-2 molecule is enriched by large number of electrons, which is beneficial to the le attack to form NH4. (C) 2016 Elsevier B.V. All rights reserved.
机译:这项工作合成了具有出色的N-2光固定能力的蜂窝状掺铁石墨碳氮化物。表征结果表明Fe3 +插入在间隙位置,并通过配位的Fe-N键稳定在富电子的g-C3N4中。 Fe3 +位点可以化学吸附并激活N-2分子,然后将光生电子从g-C3N4转移到吸附的N-2分子。 Fe0.05-CN显示出最高的NH4 +生成速率,比纯g-C3N4的生成速率高约13.5倍。密度泛函理论模拟证明了Fe3 +位的N-2活化作用是由于其高的吸附能和延长的N等价于N键。电荷密度差的结果证实了电子从Fe3 +掺杂位点到N-2分子的转移过程。 DOS结果表明,当N-2吸附在Fe3 +掺杂位点上时,氮原子中的sigma(g)2p轨道电子(HOMO)显着离域化,导致其轨道能量几乎与pi g * 2p轨道电子(LUMO)连接,证实Fe3 +掺杂位点可以有效激活N-2分子。当N-2吸附在Fe3 +掺杂位点上时,氮的Mulliken电荷为-3.1,表明N-2分子被大量电子富集,这有利于le攻击形成NH4。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号