首页> 外文期刊>Network Daily News >Investigators at Hefei University of Technology Detail Findings in Mathematics (Completed Local Binary Patterns Feature Integrated Convolutional Neural Network-based Terrain Classification Algorithm In Polarimetric Synthetic Aperture Radar ...)
【24h】

Investigators at Hefei University of Technology Detail Findings in Mathematics (Completed Local Binary Patterns Feature Integrated Convolutional Neural Network-based Terrain Classification Algorithm In Polarimetric Synthetic Aperture Radar ...)

机译:Hefei大学技术大学的研究人员详细数学发现(完成的本地二进制模式具有综合卷积神经网络基于基于卷积的地形分类算法,偏光层合成孔径雷达...)

获取原文
获取原文并翻译 | 示例

摘要

By a News Reporter-Staff News Editor at Network Daily News - Investigators publish new report on Mathematics. According to news reporting out of Hefei, People’s Republic of China, by NewsRx editors, research stated, “We propose a polarimetric synthetic aperture radar (PolSAR) image terrain classification algorithm based on complete local binary patterns (CLBP) feature integrated convolutional neural network (CNN) (CLBP-CNN). Traditional CNN has a powerful high-level deep features extraction ability, which can effectively improve the terrain classification accuracy in PolSAR images.”
机译:由Network Daily News的新闻记者播放器新闻编辑 - 调查人员发布有关数学的新报告。 根据新闻Refore,NewsRX编辑的新闻报道,研究人员说:“我们提出了基于完整的本地二进制模式(CLBP)特征综合卷积神经网络(CLBP)的偏光合成孔径雷达(POLSAR)图像地形分类算法( CNN)(CLBP-CNN)。 传统CNN具有强大的高级深度提取能力,可以有效地提高Polsar图像中的地形分类精度。”

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号