首页> 外文期刊>Journal of information security and applications >Privacy preservation in Distributed Deep Learning: A survey on Distributed Deep Learning, privacy preservation techniques used and interesting research directions
【24h】

Privacy preservation in Distributed Deep Learning: A survey on Distributed Deep Learning, privacy preservation techniques used and interesting research directions

机译:分布式深度学习中的隐私保护:有关分布式深度学习,使用的隐私保护技术和有趣的研究方向的调查

获取原文
获取原文并翻译 | 示例

摘要

Distributed or Collaborative Deep Learning, has recently gained more recognition due to its major advantage of allowing two or more learning participants to contribute and enjoy better accuracy from large and varied training datasets. Despite this advantage, it also presents key privacy issues that have to be managed. In this survey paper, an overview of Distributed or Collaborative Deep Learning has been presented. We first classify Collaborative or Distributed Deep Learning into Direct, Indirect and Peer-to-peer approaches and indicate some of their related privacy issues. We then discuss general cryptographic algorithms and other techniques that can be used for privacy preservation and also indicate their advantages and disadvantages in the Distributed Deep Learning setting. Furthermore, some fundamental theories employed in this area of research have been presented which paves the way for a comprehensive review and comparison of existing privacy approaches, most of which are based on Homomorphic Encryption. Finally, we highlight some challenges in this research domain and propose future directions. Our work reveals the following: Collaborative Deep Learning is more associated with the training stage of Deep Learning than the inference stage. Homomorphic Encryption provides a good approach for preserving the privacy of training datasets in the Collaborative Deep Learning and can become more popular if some problems associated with its use such as increased communication and computation costs are brought low. Privacy preservation in the Collaborative Deep Learning has great future prospects and attempts should be made towards providing more quantum robust and collusion resistant solutions.
机译:分布式或协作的深度学习最近获得了更多的认可,因为它的主要优势是允许两个或更多的学习参与者从大型和多样化的培训数据集中贡献并享受更好的准确性。尽管有这一优势,但它还提出了必须管理的关键隐私问题。在本调查文件中,介绍了分布式或协作深度学习的概述。我们首先将协作或分布的深度学习分类为直接,间接和点对点方法,并指出其一些相关的隐私问题。然后,我们讨论一般的加密算法和其他可用于隐私保护的技术,并表明它们在分布式深度学习环境中的优势和缺点。此外,已经提出了在这一研究领域采用的一些基本理论,这为对现有隐私方法的全面审查和比较铺平了道路,其中大多数是基于同型加密。最后,我们重点介绍了该研究领域的一些挑战,并提出了未来的方向。我们的工作揭示了以下内容:协作深度学习与深度学习的训练阶段相比,而不是推理阶段。同态加密提供了一种良好的方法,可以在协作深度学习中保留培训数据集的隐私,如果与使用相关的一些问题(例如增加的沟通和计算成本)降低,则可以变得更加流行。协作深度学习中的隐私保护具有巨大的未来前景,应为提供更宽松和抗勾结的解决方案而进行尝试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号