首页> 外文期刊>Annual Review of Earth and Planetary Sciences >The iron isotope fingerprints of redox and biogeochemical cycling in the modern and ancient Earth
【24h】

The iron isotope fingerprints of redox and biogeochemical cycling in the modern and ancient Earth

机译:现代和古代地球上氧化还原和生物地球化学循环的铁同位素指纹

获取原文
获取原文并翻译 | 示例
       

摘要

The largest Fe isotope fractionations occur during redox changes, as well as differences in bonding, but these are expressed only in natural environments in which significant quantities of Fe may be mobilized and separated. At the circumneutral pH of most low-temperature aqueous systems, Fe-aq(2+) is the most common species for mobilizing Fe, and Fe-aq(2+) has low Fe-56/Fe-54 ratios relative to Fe3+-bearing minerals. Of the variety of abiologic and biologic processes that involve redox or bonding changes, microbial Fe3+ reduction produces the largest quantities of isotopically distinct Fe by several orders of magnitude relative to abiologic processes and hence plays a major role in producing Fe isotope variations on Earth. In modern Earth, the mass of Fe cycled through redox boundaries is small, but in the Archean it was much larger, reflecting juxtaposition of large inventories of Fe2+ and Fe3+. Development of photosynthesis produced large quantities of Fe3+ and organic carbon that fueled a major expansion in microbial Fe3+ reduction in the late Archean, perhaps starting as early as similar to 3 Ga. The Fe isotope fingerprint of microbial Fe3+ reduction decreases in the sedimentary rock record between similar to 2.4 and 2.2 Ga, reflecting increased bacterial sulfate reduction and a concomitant decrease in the availability of reactive iron to support microbial Fe3+ reduction. The temporal C, S, and Fe isotope record therefore reflects the interplay of changing microbial metabolisms over Earth's history.
机译:最大的铁同位素分馏发生在氧化还原变化以及键合差异中,但是这些仅在自然环境中表达,在该环境中可能会动员并分离大量的铁。在大多数低温水系统的环境pH下,Fe-aq(2+)是最常见的动员Fe的物种,Fe-aq(2+)相对于Fe3 +-具有较低的Fe-56 / Fe-54比含矿物质。在涉及氧化还原或键变化的各种生物和生物过程中,微生物的Fe3 +还原产生的同位素不同的Fe量最多,比生物过程高几个数量级,因此在地球上的Fe同位素变化中起主要作用。在现代地球中,循环通过氧化还原边界的铁的质量很小,但在太古代中则更大,反映出大量的Fe2 +和Fe3 +库存并置。光合作用的发展产生了大量的Fe3 +和有机碳,这些气体推动了太古宙时代晚期微生物Fe3 +还原的大幅扩展,可能早在3 Ga之前就开始了。与2.4和2.2 Ga相似,反映出增加的细菌硫酸盐还原作用和随之而来的反应性铁的利用率降低,以支持微生物的Fe3 +还原作用。因此,时间C,S和Fe同位素记录反映了地球历史上微生物代谢变化的相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号