首页> 外文会议>American Geophysical Union >Fe Isotope Variations in the Modern and Ancient Earth and Other Planetary Bodies
【24h】

Fe Isotope Variations in the Modern and Ancient Earth and Other Planetary Bodies

机译:现代和古代地球和其他行星体的Fe同位素变化

获取原文

摘要

Iron, the fourth most abundant element in the Earth's crust, has four naturally occurring stable isotopes: ~(54)Fe (5.84%), ~(56)Fe (91.76%), ~(57)Fe (2.12%), and ~(58)Fe (0.28%), and the natural, mass-dependent isotope variations of Fe in the rock record span a range of ~4 per mil (‰) in ~(56)Fe/~(54)Fe ratios (Fig. 1). The field of Fe isotope geochemistry is relatively new but has received considerable attention because it may allow us to gain a better understanding of how Fe is cycled in different environments. Iron typically occurs as either reduced ferrous Fe in oxygen-poor environments, or as oxidized ferric iron in oxygen-rich environments. Notably, only the reduced species is soluble in oxygenated aqueous solutions, unless the pH is low. In the Archean and Early Proterozoic, the earth may have been relatively oxygen-poor (e.g., Kasting et al. 1979; Grandstaff 1980; Holland 1994), suggesting that there may have been significant quantities of Fe (0.9 millimolar) dissolved in the oceans as Fe(Ⅱ)_aq (e.g., Ewers 1983; Sumner 1997). The extensive iron formations of Archean to Early Proterozoic age may have been deposited from such Fe(II)-rich oceans (e.g., Beukes and Klein 1992). In the modern oxic oceans, however, Fe contents are exceedingly low, <1 nanomolar in the open oceans (e.g., Martin and Gordon 1988; Bruland et al. 1991; Martin 1992; Johnson et al. 1997), and it is now recognized that marine productivity is Fe-limited in parts of the open oceans (e.g., Martin and Fitzwater 1988; Martin et al. 1989, 1994). The differences in the behavior of Fe with redox state, and the significant isotope fractionations (l‰ or more in ~(56)Fe/~(54)Fe) that are associated with redox conditions, suggests that Fe isotope studies will be extremely useful for tracing the Fe geochemical cycle.
机译:铁,地壳中的第四个最丰富的元素,有四个天然存在的稳定同位素:〜(54)Fe(5.84%),〜(56)Fe(91.76%),〜(57)Fe(2.12%),和〜(58)Fe(0.28%)和天然,质量依赖的同位素在岩石记录中的Fe中的变化跨越〜4 /‰)在〜(56)Fe /〜(54)Fe比率(图。1)。 Fe同位素地球化学领域相对较新,但已经得到了相当多的关注,因为它可能让我们更好地了解Fe在不同环境中的FE循环。铁通常是在贫氧环境中的氧气贫瘠的含铁铁中的减少,或者在富氧环境中氧化铁铁。值得注意的是,除非pH低,否则只有降低的物种易溶于含氧水溶液中。在ARCHEAN和早期的前兆子时,地球可能相对较低(例如,Kasting等,1979; 1989年; Grandstaff 1980;荷兰1994),这表明可能已经有大量的Fe(0.9毫摩尔)溶解在海洋中作为Fe(Ⅱ)_AQ(例如EWERS 1983; SUMNER 1997)。可能已经从Fe(II)-RICH海洋(例如,Beukes和Klein 1992)中沉积了Archean至早期前兆子代的广泛的原料。然而,在现代的氧海洋中,Fe含量非常低,在开阔的海洋中<1纳摩尔(例如,Martin和Gordon 1988; Bruland等,1991; Martin 1992; Johnson等,1997),现在认可海洋生产力在开阔的海洋部分(例如,Martin et yetzwater 1988; Martin等,1989,1994)。氧化还原状态的Fe的行为的差异,以及与氧化还原条件相关的氧化铈分级(L =或更多In〜(56)Fe /〜(54)Fe)表明Fe同位素研究将非常有用用于追踪Fe地球化学循环。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号