...
首页> 外文期刊>The International Journal of Advanced Manufacturing Technology >Accurate and computationally efficient approach for simultaneous feedrate optimization and servo error pre-compensation of long toolpaths-with application to a 3D printer
【24h】

Accurate and computationally efficient approach for simultaneous feedrate optimization and servo error pre-compensation of long toolpaths-with application to a 3D printer

机译:用于同时进给优化和伺服误差的准确和计算有效的方法,以及使用应用于3D打印机的长刀具路径的伺服误差

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Feedrate optimization (FO) and servo error pre-compensation (SEP) are often performed independently to improve the accuracy and speed, respectively, of computer-controlled manufacturing machines. However, this independent approach leads to excessive tradeoff between speed and accuracy. To address this issue, the authors have proposed a new concept of simultaneous FO and SEP (or FOSEP) where SEP is integrated into FO, yielding large reductions in motion time without sacrificing positioning accuracy relative to independent FO and SEP. However, in their prior work, the authors used linear programming to achieve FOSEP resulting in the following: (i) inaccuracy in enforcing nonlinear constraints and (ii) poor computational efficiency for long toolpaths. To address these two problems, this paper proposes a new approach for FOSEP using windowed sequential linear programming (SLP). The use of SLP improves the accuracy of FOSEP in enforcing nonlinear constraints; however, it lowers the computational efficiency of FOSEP. Windowing addresses the problem of low computational efficiency by applying SLP to FOSEP in small overlapping batches. A downside of windowed SLP is that it may lead to infeasibility in the optimization. This problem is resolved by smoothly switching between the optimal solution obtained using windowed SLP and a backup conservative solution in case of impending infeasibility. The proposed windowed SLP with smooth switching approach for FOSEP is validated in simulations where it significantly improves the accuracy and computational efficiency of FOSEP while guaranteeing feasibility. The practical benefits of the proposed approach for FOSEP is demonstrated in experiments on a 3D printer where it achieves up to 25% reduction in cycle time without sacrificing printing quality relative to the conventional approach of independent FO then SEP, both applied to a long toolpath.
机译:进给速度优化(FO)和伺服误差预补偿(SEP)通常单独执行,以分别提高计算机控制制造机器的精度和速度。然而,这种独立的方法导致了速度和准确性之间的过度权衡。为了解决这个问题,作者提出了同时进行FO和SEP(或FOSEP)的新概念,其中SEP被集成到FO中,在不牺牲相对于独立FO和SEP的定位精度的情况下,大幅减少了运动时间。然而,在他们之前的工作中,作者使用线性规划来实现FOSEP,结果如下:(i)在执行非线性约束时不准确;(ii)对于长刀具路径,计算效率低。为了解决这两个问题,本文提出了一种利用窗口序列线性规划(SLP)实现FOSEP的新方法。SLP的使用提高了FOSEP执行非线性约束的准确性;然而,它降低了FOSEP的计算效率。窗口处理通过在小重叠批次中将SLP应用于FOSEP来解决计算效率低的问题。加窗SLP的一个缺点是,它可能会导致优化不可行。解决这个问题的方法是,在即将出现不可行的情况下,在使用加窗SLP获得的最优解和备用保守解之间进行平滑切换。仿真结果表明,该算法在保证可行性的同时,显著提高了FOSEP的精度和计算效率。在3D打印机上的实验证明了所提出的FOSEP方法的实际好处,与传统的独立FO-then SEP方法相比,该方法可以在不牺牲打印质量的情况下将循环时间缩短25%,这两种方法都适用于长刀具轨迹。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号