...
首页> 外文期刊>Analytical chemistry >Pd-Doping-Induced Oxygen Vacancies in One-Dimensional Tungsten Oxide Nanowires for Enhanced Acetone Gas Sensing
【24h】

Pd-Doping-Induced Oxygen Vacancies in One-Dimensional Tungsten Oxide Nanowires for Enhanced Acetone Gas Sensing

机译:一维氧化钨纳米线中的PD掺杂诱导的氧空位,用于增强丙酮气体感测

获取原文
获取原文并翻译 | 示例
           

摘要

Metal oxide semiconductors (MOS) with different nanostructures have been widely used as gas sensing materials due to the tunable interface structures and properties. However, further improvement of the sensing sensitivity and selectivity is still challenging in this area. Constructing appropriate heterogeneous interface structures and oxygen vacancies is one of the important strategies to tune the sensing properties of MOS. In the present study, interfacial heterostructures in PdxW18O49 nanowires (PdxW18O49 NWs) were fabricated and manipulated by doping different Pd contents through a simple hydrothermal process. Relevant characterization proved that the structure and composition of the one-dimensional (1D) nanomaterial can be effectively changed by Pd doping. It was found that the oxygen vacancy concentration increases first with the increase of Pd content, and when the Pd content increases to 7.18% (Pd7.18%W18O49 NWs), the oxygen vacancy content reaches the maximum (52.5%). If the Pd content continues to increase, the oxygen vacancy ratio decreases. The gas sensing investigations illustrated that the PdxW18O49 NWs exhibited enhanced sensing properties than pure W18O49 NWs toward acetone. Among the as-prepared catalysts, the Pd7.18%W18O49 NWs showed the best sensing response and the fastest response-recovery speeds (5 and 10 s, respectively) at a working temperature of 175 degrees C. In addition, this 1D nanostructure with fabricated heterostructures also delivers a good sensing selectivity and a wide detection range from 100 ppb to 300 ppm, with maintaining excellent performance in the presence of high concentrations of ethanol and carbon dioxide. The excellent gas sensing behavior could be attributed to the generated oxygen vacancies and the heterostructures upon Pd doping. This study offers a novel strategy for the design of high-performance gas sensors for ppb-level acetone sensing.
机译:具有不同纳米结构的金属氧化物半导体(MOS)由于其可调的界面结构和性能,被广泛用作气敏材料。然而,在这一领域,进一步提高传感灵敏度和选择性仍然具有挑战性。构建合适的异质界面结构和氧空位是调节MOS传感性能的重要策略之一。在本研究中,通过简单的水热过程掺杂不同的Pd含量,制备并操纵了PdxW18O49纳米线(PdxW18O49 NWs)中的界面异质结构。相关表征表明,钯掺杂可以有效地改变一维纳米材料的结构和组成。研究发现,随着钯含量的增加,氧空位浓度先增加,当钯含量增加到7.18%(Pd7.18%W18O49 NWs)时,氧空位含量达到最大值(52.5%)。如果钯含量继续增加,氧空位率降低。气敏研究表明,与纯W18O49 NWs相比,PdxW18O49 NWs对丙酮的气敏性能增强。在制备的催化剂中,Pd7。18%W18O49 NWs在175摄氏度的工作温度下显示出最佳的传感响应和最快的响应恢复速度(分别为5秒和10秒)。此外,这种具有预制异质结构的一维纳米结构还提供了良好的传感选择性和从100 ppb到300 ppm的宽检测范围,在高浓度乙醇和二氧化碳的存在下保持优异的性能。这种优异的气敏性能可以归因于钯掺杂时产生的氧空位和异质结构。本研究为设计用于ppb水平丙酮传感的高性能气体传感器提供了一种新的策略。

著录项

  • 来源
    《Analytical chemistry》 |2021年第20期|共8页
  • 作者单位

    Chinese Acad Sci Changchun Inst Appl Chem State Key Lab Electroanalyt Chem Changchun 130022 Jilin Peoples R China;

    Chinese Acad Sci Changchun Inst Appl Chem State Key Lab Electroanalyt Chem Changchun 130022 Jilin Peoples R China;

    Chinese Acad Sci Changchun Inst Appl Chem State Key Lab Electroanalyt Chem Changchun 130022 Jilin Peoples R China;

    Chinese Acad Sci Changchun Inst Appl Chem State Key Lab Electroanalyt Chem Changchun 130022 Jilin Peoples R China;

    Chinese Acad Sci Changchun Inst Appl Chem State Key Lab Electroanalyt Chem Changchun 130022 Jilin Peoples R China;

    Chinese Acad Sci Changchun Inst Appl Chem State Key Lab Electroanalyt Chem Changchun 130022 Jilin Peoples R China;

    Chinese Acad Sci Changchun Inst Appl Chem State Key Lab Electroanalyt Chem Changchun 130022 Jilin Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分析化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号