首页> 外文期刊>ACS applied materials & interfaces >Bispyrene Functionalization Drives Self-Assembly of Graphite Nanoplates into Highly Efficient Heat Spreader Foils
【24h】

Bispyrene Functionalization Drives Self-Assembly of Graphite Nanoplates into Highly Efficient Heat Spreader Foils

机译:双丙烯官能化将石墨纳米板的自组装驱动成高效的散热器箔

获取原文
获取原文并翻译 | 示例
       

摘要

Thermally conductive nanopapers fabricated from graphene and related materials are currently showing great potential in thermal management applications. However, thermal contacts between conductive plates represent the bottleneck for thermal conductivity of nanopapers prepared in the absence of a high temperature step for graphitization. In this work, the problem of ineffective thermal contacts is addressed by the use of bifunctional polyaromatic molecules designed to drive self-assembly of graphite nanoplates (GnP) and establish thermal bridges between them. To preserve the high conductivity associated to a defect-free sp~(2) structure, non-covalent functionalization with bispyrene compounds, synthesized on purpose with variable tethering chain length, was exploited. Pyrene terminal groups granted for a strong π–π interaction with graphene surface, as demonstrated by UV–Vis, fluorescence, and Raman spectroscopies. Bispyrene molecular junctions between GnP were found to control GnP organization and orientation within the nanopaper, delivering significant enhancement in both in-plane and cross-plane thermal diffusivities. Finally, nanopapers were validated as heat spreader devices for electronic components, evidencing comparable or better thermal dissipation performance than conventional Cu foil, while delivering over 90% weight reduction.
机译:由石墨烯和相关材料制成的导热纳米纸目前在热管理应用中显示出巨大的潜力。然而,导电板之间的热接触是在没有高温石墨化步骤的情况下制备的纳米纸导热性的瓶颈。在这项工作中,通过使用双功能多环芳烃分子来驱动石墨纳米板(GnP)的自组装并在它们之间建立热桥,解决了无效热接触的问题。为了保持与无缺陷sp~(2)结构相关的高导电性,利用可变栓链长度合成的双芘化合物进行非共价功能化。紫外光-可见光谱、荧光光谱和拉曼光谱表明,芘端基与石墨烯表面有强烈的π-π相互作用。研究发现,GnP之间的双芘分子连接可以控制纳米纸中GnP的组织和取向,从而显著提高平面内和平面间的热扩散率。最后,纳米纸被验证为电子元件的散热装置,证明其散热性能与传统铜箔相当或更好,同时重量减轻90%以上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号