...
首页> 外文期刊>Biomaterials >Precision targeting of bacterial pathogen via bi-functional nanozyme activated by biofilm microenvironment
【24h】

Precision targeting of bacterial pathogen via bi-functional nanozyme activated by biofilm microenvironment

机译:生物膜微观环境激活双官能纳米酶细菌病原体的精度靶向

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Human dental caries is an intractable biofilm-associated disease caused by microbial interactions and dietary sugars on the host's teeth. Commensal bacteria help control opportunistic pathogens via bioactive products such as hydrogen peroxide (H2O2). However, high-sugar consumption disrupts homeostasis and promotes pathogen accumulation in acidic biofilms that cause tooth-decay. Here, we exploit the pathological (sugar-rich/acidic) conditions using a nanohybrid system to increase intrinsic H2O2 production and trigger pH-dependent reactive oxygen species (ROS) generation for efficient biofilm virulence targeting. The nanohybrid contains glucoseoxidase that catalyzes glucose present in biofilms to increase intrinsic H2O2, which is converted by iron oxide nanoparticles with peroxidase-like activity into ROS in acidic pH. Notably, it selectively kills Streptococcus mutans (pathogen) without affecting Streptococcus oralis (commensal) via preferential pathogen-binding and in situ ROS generation. Furthermore, nanohybrid treatments potently reduced dental caries in a rodent model. Compared to chlorhexidine (positive-control), which disrupted oral microbiota diversity, the nanohybrid had significant higher efficacy without affecting soft-tissues and the oral-gastrointestinal microbiomes, while modulating dental health-associated microbial activity in vivo. The data reveal therapeutic precision of a bi-functional hybrid nanozyme against a biofilm-related disease in a controlled-manner activated by pathological conditions.
机译:人类龋齿是一种难治的生物膜相关疾病,由宿主牙齿上的微生物相互作用和膳食糖引起。共生细菌通过过氧化氢(H2O2)等生物活性产物帮助控制机会性病原体。然而,高糖摄入会破坏体内平衡,并促进病原体在酸性生物膜中积累,从而导致蛀牙。在这里,我们利用病理(富糖/酸性)条件,使用纳米杂交系统来增加内源性H2O2的产生,并触发pH依赖性活性氧(ROS)的产生,从而实现有效的生物膜毒力靶向。该纳米杂化物含有葡萄糖氧化酶,该酶催化生物膜中存在的葡萄糖增加内源性H2O2,在酸性pH下,具有过氧化物酶样活性的氧化铁纳米颗粒将其转化为ROS。值得注意的是,它通过优先病原体结合和原位ROS生成,选择性杀死变形链球菌(病原体),而不影响口腔链球菌(共生菌)。此外,纳米杂交疗法可以有效地减少啮齿类动物模型中的龋齿。与破坏口腔微生物群落多样性的洗必泰(阳性对照)相比,纳米杂交在不影响软组织和口腔胃肠道微生物群落的情况下具有显著更高的功效,同时在体内调节与牙齿健康相关的微生物活性。这些数据揭示了一种双功能杂交纳米酶对生物膜相关疾病的治疗精度,这种疾病是通过病理条件激活的可控方式进行的。

著录项

  • 来源
    《Biomaterials》 |2021年第1期|共12页
  • 作者单位

    Univ Penn Dept Radiol Perelman Sch Med Philadelphia PA 19104 USA;

    Univ Penn Sch Dent Med Levy Ctr Oral Hlth Biofilm Res Labs Philadelphia PA 19104 USA;

    Univ Penn Dept Bioengn Sch Engn &

    Appl Sci Philadelphia PA 19104 USA;

    Univ Penn Sch Dent Med Levy Ctr Oral Hlth Biofilm Res Labs Philadelphia PA 19104 USA;

    Univ Penn Sch Dent Med Levy Ctr Oral Hlth Biofilm Res Labs Philadelphia PA 19104 USA;

    Univ Penn Sch Dent Med Levy Ctr Oral Hlth Biofilm Res Labs Philadelphia PA 19104 USA;

    Univ Penn Dept Radiol Perelman Sch Med Philadelphia PA 19104 USA;

    Univ Penn Sch Dent Med Levy Ctr Oral Hlth Biofilm Res Labs Philadelphia PA 19104 USA;

    Univ Penn Dept Radiol Perelman Sch Med Philadelphia PA 19104 USA;

    Univ Penn Dept Radiol Perelman Sch Med Philadelphia PA 19104 USA;

    Univ Penn Sch Dent Med Dept Pathol Philadelphia PA 19014 USA;

    Univ Penn Dept Radiol Perelman Sch Med Philadelphia PA 19104 USA;

    Univ Penn Dept Radiol Perelman Sch Med Philadelphia PA 19104 USA;

    Univ Penn Sch Dent Med Levy Ctr Oral Hlth Biofilm Res Labs Philadelphia PA 19104 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;
  • 关键词

    Hybrid nanozyme; Glucose oxidase; Catalytic nanoparticles; Biofilm; Polymicrobial; Dental caries;

    机译:杂交纳米酶;葡萄糖氧化酶;催化纳米颗粒;生物膜;多微生物;龋齿;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号