首页> 外文期刊>Journal of Electrochemical Energy Conversion and Storage >An Experimental Study on Thermal Runaway Behavior for High-Capacity Li(Ni0.8Co0.1Mn0.1)O-2 Pouch Cells at Different State of Charges
【24h】

An Experimental Study on Thermal Runaway Behavior for High-Capacity Li(Ni0.8Co0.1Mn0.1)O-2 Pouch Cells at Different State of Charges

机译:不同收费状态下高容量Li(Ni0.8Co0.1Mn0.1)O-2袋细胞的热失控行为的实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

Lithium-ion cells normally operate during 0% and 100% state of charge (SOC), therefore thermal runaway can occur at any SOC. In this paper, the 74 Ah lithium-ion pouch cells with the Li(Ni0.8Co0.1Mn0.1)O-2 cathode were thermally abused by lateral heating in a semi-open chamber. The differences of thermal runaway behavior were investigated under six SOCs. Characteristic parameters such as triggering time and triggering temperature for thermal runaway show a negative correlation with SOCs, while maximum surface temperature and maximum surface temperature rise rate show a strongly positive correlation. Besides, mass loss ratio increases exponentially with equivalent specific capacity statistically, which implies that the pouch cells with high specific energy density and high capacity may eject more violently. Furthermore, the impact on the surroundings caused by high-temperature ejections was studied, and maximum ambient temperature and maximum ambient pressure in the chamber reached a plateau at middle SOCs. Based on the thermal impact on the surroundings, a theoretical method is proposed to evaluate the deterioration of heat dissipation by venting, and simplified to quantitatively calculate the deterioration under above SOCs. The results can provide guidance for battery safety management strategies and structure design of the battery pack.
机译:锂离子电池通常在0%和100%的荷电状态(SOC)下运行,因此在任何荷电状态下都可能发生热失控。在本文中,在半开放的腔室中,采用横向加热的方式,对74 Ah锂离子袋式锂离子电池(Li(Ni0.8Co0.1Mn0.1)O-2阴极)进行了热滥用。研究了六种SOC下热失控行为的差异。热失控的触发时间和触发温度等特征参数与SOC呈负相关,而最大表面温度和最大表面温升率呈强正相关。此外,在统计上,质量损失率随当量比容量呈指数增长,这意味着具有高比能密度和高容量的袋状细胞可能会更猛烈地喷射。此外,还研究了高温喷射对周围环境的影响,试验箱中的最高环境温度和最高环境压力在中间SOC处达到了一个平台。基于对周围环境的热影响,提出了一种评估通风散热劣化的理论方法,并将其简化为定量计算上述SOC条件下的劣化。研究结果可为电池安全管理策略和电池组结构设计提供指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号