首页> 外文学位 >Electrochemical performance of Li-Mg and columnar Si anodes for high capacity Li-ion cells: Experiments and modeling of charge/discharge behavior.
【24h】

Electrochemical performance of Li-Mg and columnar Si anodes for high capacity Li-ion cells: Experiments and modeling of charge/discharge behavior.

机译:高容量锂离子电池的Li-Mg和柱状Si阳极的电化学性能:充电/放电行为的实验和建模。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation work can be divided into two parts: (1) an experimental section involving synthesis and electrochemical testing of (a) Li-Mg and (b) columnar Si anodes for high capacity Li-ion batteries, and (2) a theoretical modeling section in which analytical modeling frameworks are developed to predict (a) electrochemical charge/discharge behavior of amorphous Si thin film anodes, and (b) the discharge characteristics of a graphite/LiFePO 4 cell.;In the first part of the experimental work, two Li(Mg) alloys with nominal compositions, Li-60 wt.% Mg (Li7Mg3) and Li-30 wt.% Mg (Li8Mg) were synthesized by direct alloying. These alloys showed electrochemical discharge characteristics that were comparable with those of pure Li. A phase transition, from the BCC Li(Mg) beta-phase to the HCP Mg(Li) alpha- phase, was found to occur during the discharge. The Li(Mg) electrodes also showed some degree of reversibility when cycled against LiCoO 2 and Li.;In the second part of the experimental work, four different columnar Si structures were obtained by electrochemical etching. Si electrodes with porosities between 50-65% and with clear columnar structures showed reversible lithiation/delithiation capacities greater than 1000 mAh/g after 20 cycles, which is higher than the reported values in literature for Si anodes with similar structures. The Si electrode with wide interconnected pores showed poor electrochemical performance. The Si columns in the cycled electrodes appeared to be largely intact after 20 cycles.;In the theoretical modeling work, we first developed an analytical modeling framework to predict the lithiation/delithiation behavior of amorphous Si (a-Si) thin film electrodes. Li transport through the electrode (by diffusion) and electrochemical charge transfer at the electrode-electrolyte interface were described mathematically in this model. The simulated charge/discharge characteristics agreed well with the experimental data of a-Si thin film anodes at different C-rates.;An integrated model was developed to predict the discharge characteristics of a full cell consisting of graphite anode and LiFePO4 cathode. In this model, the phase boundary movement within the LiFePO4 electrode upon lithiation was described. When the simulation results for LiFePO 4/Li and LiC6/Li half cells were coupled together, they were found to predict successfully the discharge behavior of a capacity-matched graphite/LiFePO4 cell.
机译:本文的研究工作可以分为两个部分:(1)一个实验部分,涉及(a)Li-Mg和(b)用于大容量锂离子电池的柱状硅阳极的合成和电化学测试,以及(2)理论模型。在该部分中,建立了分析建模框架以预测(a)非晶硅薄膜阳极的电化学充电/放电行为,以及(b)石墨/ LiFePO 4电池的放电特性。;在实验工作的第一部分中,通过直接合金化合成了两种具有标称组成的Li(Mg)合金,即Li-60 wt。%Mg(Li7Mg3)和Li-30 wt。%Mg(Li8Mg)。这些合金的电化学放电特性与纯Li相当。发现在放电过程中发生了从BCC Li(Mg)β相到HCP Mg(Li)α相的相变。当与LiCoO 2和Li循环时,Li(Mg)电极也显示出一定程度的可逆性。在实验工作的第二部分,通过电化学蚀刻获得了四个不同的柱状Si结构。孔隙率在50-65%之间且具有清晰的柱状结构的Si电极在20个循环后显示出可逆的锂化/去锂化容量大于1000 mAh / g,这高于文献中具有相似结构的Si阳极的报道值。具有宽的互连孔的Si电极显示出差的电化学性能。循环电极中的Si列在20个循环后似乎基本完好无损。;在理论建模工作中,我们首先开发了一个分析建模框架来预测非晶Si(a-Si)薄膜电极的锂化/去锂行为。在该模型中,用数学方法描述了锂在电极中的传输(通过扩散)和电极-电解质界面处的电化学电荷转移。模拟的充放电特性与a-Si薄膜阳极在不同C速率下的实验数据吻合良好。建立了集成模型来预测由石墨阳极和LiFePO4阴极组成的全电池的放电特性。在该模型中,描述了锂化过程中LiFePO4电极内的相界移动。当将LiFePO 4 / Li和LiC6 / Li半电池的模拟结果耦合在一起时,发现它们可以成功预测容量匹配的石墨/ LiFePO4电池的放电行为。

著录项

  • 作者

    Jagannathan, Madhusudan.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Engineering Materials Science.;Energy.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 138 p.
  • 总页数 138
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:41:44

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号