首页> 外文期刊>International Journal of Material Forming: Official Journal of the European Scientific Association for Material Forming - ESAFORM >A preform deformation and resin flow coupled model including the cure kinetics and chemo-rheology for the VARTM process
【24h】

A preform deformation and resin flow coupled model including the cure kinetics and chemo-rheology for the VARTM process

机译:一种预制件变形和树脂流量耦合模型,包括固化动力学和用于杠杆过程的化学流变学

获取原文
获取原文并翻译 | 示例
           

摘要

The present paper deals with preform deformation and resin flow coupled to cure kinetics and chemo-rheology for the VARTM process. By monitoring the coupled resin infusion and curing steps through temperature control, our primary aim is to reduce the cycle time of the process. The analysis is based on the two-phase porous media flow and the preform deformation extended with cure kinetics and heat transfer. A novel feature is the consideration of temperature and preform deformation coupled to resin viscosity and permeability in the VARTM process. To tackle this problem, we extend the porous media framework with the heat transfer and chemical reaction, involving additional convection terms to describe the proper interactions with the resin flow. Shell kinematics is applied to thin-walled preforms, which significantly reduces the problem size. The proposed finite element discretized system of coupled models is solved in a staggered way to handle the partially saturated flow front under non-isothermal conditions efficiently. From the numerical example, we conclude that the cycle time of the VARTM infusion process can be shortened over 68%with the proper temperature control. Moreover, the proposed framework can be applied to optimize the processing parameters and check the compatibility of a resin system for a given infusion task.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号