首页> 外文学位 >Coupled electromagnetic thermal and kinetic modeling for microwave processing of polymers with temperature- and cure-dependent permittivity using 3D FEM.
【24h】

Coupled electromagnetic thermal and kinetic modeling for microwave processing of polymers with temperature- and cure-dependent permittivity using 3D FEM.

机译:使用3D FEM对具有温度和固化依赖介电常数的聚合物进行微波处理的电磁热力学和动力学耦合模型。

获取原文
获取原文并翻译 | 示例

摘要

Polymer processing is an important application of microwave heating in industry. Microwave assisted curing of thermoset polymers has the advantage of heating the polymer precursor materials volumetrically and hence can lead to superior cure with efficiency not available with conventional convection heating. However, due to the complex interactions between the electromagnetic fields and the material, achieving the promise of microwave assisted curing is challenging. This is due to the fact that electrical properties (e.g. the complex permittivity) of the material change non-linearly with temperature and composition during the curing process. Hence, the field distribution within the cavity applicator changes as a function of the extent-of-cure and local temperature of the materials being processed. It is vital in modeling the curing process that the microwave power deposition, heat transfer, and polymer curing kinetics be coupled together.; In this work, we develop a self-consistent 3D marching-in-time multiphysics model, which includes electromagnetic field distribution, microwave power absorption, heat transfer, and polymer curing kinetics. Temperature- and cure-dependent permittivity and curing kinetics for DGEBA/DDS based on experimental data are explicitly included in the model. An edge-based finite element method (FEM) is implemented as an electromagnetic model to ensure the tangential continuity of electric field and divergence-free condition for source free region, while node-based FEM is used in thermal model to solve for the temperature distribution. The numerical results can be used to determine the time-dependent temperature distribution and curing profile across the polymer sample, as well as the electromagnetic field distribution within the cavity applicator. With the help of this numerical model, robust control strategies can be developed for the polymer curing process. The numerical results are compared with the measured data and a good agreement is achieved.; In this research, the electromagnetic modeling of a novel adaptable multi-feed multimode cylindrical cavity applicator is performed, where the spatial distribution of the electric field can be specified a priori to accomplish a desired processing task. The electric field intensity inside the cavity can be tailored by varying the power delivered to each port, and mode-switching can be realized without mechanically adjusting the cavity dimensions. An orthogonal feeding mechanism is developed to reduce the cross coupling between the ports. Numerical simulations are performed for the cavity applicator to verify the theoretical analysis.
机译:聚合物加工是微波加热在工业中的重要应用。微波辅助的热固性聚合物固化具有体积加热聚合物前体材料的优势,因此可以以常规对流加热无法提供的效率实现出色的固化。然而,由于电磁场和材料之间的复杂相互作用,实现微波辅助固化的前景充满了挑战。这是由于以下事实:在固化过程中,材料的电性能(例如复介电常数)随温度和组成非线性变化。因此,空腔施加器内的场分布根据所处理材料的固化程度和局部温度而变化。在建模固化过程中,至关重要的是将微波功率沉积,传热和聚合物固化动力学耦合在一起。在这项工作中,我们建立了一个自洽的3D实时行进多物理场模型,该模型包括电磁场分布,微波功率吸收,热传递和聚合物固化动力学。基于实验数据的DGEBA / DDS的取决于温度和固化的介电常数和固化动力学明确包含在模型中。基于边缘的有限元方法(FEM)被用作电磁模型,以确保电场的切向连续性和无源区域的无散度条件,而基于节点的有限元法则在热模型中用于求解温度分布。数值结果可用于确定聚合物样品上随时间变化的温度分布和固化曲线,以及腔体施加器内的电磁场分布。借助该数值模型,可以为聚合物固化过程开发可靠的控制策略。将数值结果与实测数据进行比较,取得了很好的一致性。在这项研究中,对新型适应性多进料多模圆柱腔式涂药器进行电磁建模,其中可以事先指定电场的空间分布以完成所需的加工任务。可以通过改变传递到每个端口的功率来调整腔体内的电场强度,并且无需机械调整腔体尺寸即可实现模式切换。开发了正交进给机构以减少端口之间的交叉耦合。对型腔施加器进行了数值模拟,以验证理论分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号