首页> 外文期刊>Automatica >Detection of intermittent faults based on an optimally weighted moving average T-2 control chart with stationary observations
【24h】

Detection of intermittent faults based on an optimally weighted moving average T-2 control chart with stationary observations

机译:基于具有静止观测的最佳加权移动平均T-2控制图的基于最佳加权的移动平均T-2控制图来检测间歇性故障

获取原文
获取原文并翻译 | 示例
           

摘要

The moving average (MA)-type scheme, also known as the smoothing method, has been well established within the multivariate statistical process monitoring (MSPM) framework since the 1990s. However, its theoretical basis is still limited to smoothing independent data, and the optimality of its equally or exponentially weighted scheme remains unproven. This paper aims to weaken the independence assumption in the existing MA method, and then extend it to a broader area of dealing with autocorrelated weakly stationary processes. With the discovery of the non-optimality of the equally and exponentially weighted schemes used for fault detection when data have autocorrelation, the essence that they do not effectively utilize the correlation information of samples is revealed, giving birth to an optimally weighted moving average (OWMA) theory. The OWMA method is combined with the Hotelling's T-2 statistic to form an OWMA T-2 control chart (OWMA-TCC), in order to detect a more challenging type of fault, i.e., intermittent fault (IF). Different from the MA scheme that puts an equal weight on samples within a time window, OWMA-TCC uses correlation (autocorrelation and cross correlation) information to find an optimal weight vector (OWV) for the purpose of IF detection (IFD). In order to achieve a best IFD performance, the concept of IF detectability is defined and corresponding detectability conditions are provided, which further serve as selection criteria of the OWV. Then, the OWV is given in the form of a solution to nonlinear equations, whose existence is proven with the aid of the Brouwer fixed-point theory. Moreover, symmetrical structure of the OWV is revealed, and the optimality of the MA scheme for any IF directions when data exhibit no autocorrelation is proven. Finally, simulations on a numerical example and a continuous stirred tank reactor process are carried out to give a comprehensive comparison among OWMA-TCC and several existing static and dynamic MSPM methods. The results show a superior IFD performance of the developed methods. (c) 2020 Elsevier Ltd. All rights reserved.
机译:None

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号