首页> 外文OA文献 >A statistical fault detection and diagnosis method for centrifugal chillers based on exponentially-weighted moving average control charts and support vector regression
【2h】

A statistical fault detection and diagnosis method for centrifugal chillers based on exponentially-weighted moving average control charts and support vector regression

机译:基于指数加权移动平均控制图和支持向量回归的离心式冷水机组统计故障检测与诊断方法

摘要

This paper presents a new fault detection and diagnosis (FDD) method for centrifugal chillers of building air-conditioning systems. Firstly, the Support Vector Regression (SVR) is adopted to develop the reference PI models. A new PI, namely the heat transfer efficiency of the sub-cooling section (εsc), is proposed to improve the FDD performance. Secondly, the Exponentially-Weighted Moving Average (EWMA) control charts are introduced to detect faults in a statistical way to improve the ratios of correctly detected points. Thirdly, when faults are detected, diagnosis follows which is based on a proposed FDD rule table. Six typical chiller component faults are concerned in this paper. This method is validated using the real-time experimental data from the ASHRAE RP-1043. Test results show that the combined use of SVR and EWMA can achieve the best performance. Results also show that significant improvements are achieved compared with a commonly used method using Multiple Linear Regression (MLR) and t-statistic.
机译:本文提出了一种新的建筑空调系统离心式制冷机故障检测与诊断方法。首先,采用支持向量回归(SVR)来开发参考PI模型。为了提高FDD性能,提出了一种新的PI,即过冷段的传热效率(εsc)。其次,引入了指数加权移动平均线(EWMA)控制图,以统计方式检测故障,以提高正确检测点的比率。第三,当检测到故障时,将根据建议的FDD规则表进行诊断。本文涉及六个典型的冷水机组故障。使用ASHRAE RP-1043的实时实验数据验证了该方法。测试结果表明,结合使用SVR和EWMA可以达到最佳性能。结果还表明,与使用多重线性回归(MLR)和t统计量的常用方法相比,可以实现显着改善。

著录项

  • 作者

    Zhao Y; Wang S; Xiao F;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号