...
首页> 外文期刊>Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics >A one-step dynamic hydrothermal method for the synthesis of orthorhombic LiMnO2/CNTs nanocomposites networks for Li-ion batteries Chaoqi
【24h】

A one-step dynamic hydrothermal method for the synthesis of orthorhombic LiMnO2/CNTs nanocomposites networks for Li-ion batteries Chaoqi

机译:锂离子电池的锂离子电池纳米复合网合成的一步动态水热方法Chaoqi

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Orthorhombic LiMnO2 (o-LiMnO2) is considered as a potential cathode material for lithium ion batteries due to its high theoretical capacity and low cost. However, the irreversible phase transformation to spinel LiMn2O4 and sluggish lithium ion diffusion kinetics result in low practical specific capacity and poor cycling stability. In this work, conductive o-LiMnO2/carbon nanotubes (CNTs) composites frameworks were constructed via an ingenious one-step dynamic hydrothermal method. The obtained o-LiMnO2/CNTs composites achieved outstanding electrochemical performance upon adjustment of the CNTs content. The results demonstrated either physical introduction of 1 wt% CNTs into o-LiMnO2 or in-situ formed o-LiMnO2/CNTs composite with 0.5 wt% CNTs could improve electrochemical performance effectively compared with pristine o-LiMnO2. However, when the content of CNTs increased to 1 wt% in in-situ formed o-LiMnO2/CNTs, the specific capacity reached 194.4 mAh g(-1) and retention rate was 93.7% after 50 cycles at 0.1C. Moreover, the in-situ formed composite with 5 wt% CNTs led to the optimum specific capacity of 204.9 mAh g(-1) and a high capacity retention rate (97.7% after 50 cycles at 0.1C). Galvanostatic intermittent titration technique (GITT) measurement also demonstrated that 5 wt% CNTs in o-LiMnO2/CNTs composite drastically improved the slowest Li+ diffusion step by a factor 100 times after 30 cycles as compared to the pristine counterpart. This behaviour demonstrated an accelerated diffusion of lithium through this new approach and improved reversibility of charging-discharging. (C) 2020 Published by Elsevier B.V.
机译:正交晶系LiMnO2(o-LiMnO2)因其理论容量高、成本低而被认为是一种潜在的锂离子电池正极材料。然而,尖晶石LiMn2O4的不可逆相变和缓慢的锂离子扩散动力学导致实际比容量低和循环稳定性差。在这项工作中,通过巧妙的一步动态水热法构建了导电o-LiMnO2/碳纳米管(CNTs)复合材料框架。通过调整碳纳米管的含量,制备的o-LiMnO2/CNTs复合材料获得了优异的电化学性能。结果表明,与原始的o-LiMnO2相比,在o-LiMnO2中物理引入1 wt%的碳纳米管或原位形成0.5 wt%碳纳米管的o-LiMnO2/CNTs复合材料都能有效地改善电化学性能。然而,当原位生成的o-LiMnO2/CNTs中CNTs的含量增加到1 wt%时,在0.1C下50次循环后,比容量达到194.4 mAh g(-1),保留率为93.7%。此外,含5 wt%碳纳米管的原位形成复合材料的最佳比容量为204.9 mAh g(-1),且容量保持率较高(在0.1C下50次循环后为97.7%)。恒电流间歇滴定技术(GITT)测量还表明,与原始的碳纳米管相比,在30个循环后,5 wt%的碳纳米管在o-LiMnO2/CNTs复合材料中显著改善了最慢的Li+扩散步骤100倍。这种行为表明,通过这种新方法,锂的扩散速度加快,充电和放电的可逆性得到改善。(C) 2020年爱思唯尔公司出版。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号