首页> 外文期刊>Analytical chemistry >Matrix Representation of Solution Mixing by Aliquot Exchange
【24h】

Matrix Representation of Solution Mixing by Aliquot Exchange

机译:等分交换解决方案混合的矩阵表示

获取原文
获取原文并翻译 | 示例
       

摘要

We present a mathematical description of mixing two solutions by exchanging aliquots back and forth between them. We propose that this method of aliquot exchange can be used to automate calibration curve preparation in a way that produces less solvent waste than conventional serial dilution methods. We also show its use in quickly mixing solutions. The process of aliquot exchange is represented mathematically by a 2 x 2 symmetric matrix, A, that is a function of the volume or percentage o/liquid, p, that is exchanged. Each cycle of aliquot exchange is represents! by operating the matrix, A, on the previous concentrations. That is, after n mixing cycles, the final concentrations (C↓(i)↑(n)) are given by A(p↓(n))A(p↓(n-1))…A(P↓(1)) operating on the initial concentrations (C↓(i)↑(0)), or (A↓(p))↑(n)C↓(i)↑(0) if the same amount of liquid is exchanged in each 8rep. We observe close agreement between theory and experiment. For solutions that have equal initial volumes, both the matrix A(p) and the product of any number of such matrices that may have the same or different values of p have equal diagonal and equal off-diagonal elements(they are symmetric), the sum of the elements in any row or co.mn sums to unity, and the operation of any of these matrices on a set of concentrations produces two new concentrations that sum to the same value as the sum of the initial concentrations. We follow the mixing process for two solutions of equal volume by plotting the matrix element A↓(l2)↑(n) of A↑(n), which approaches 0.5 as n increases. As expected, the larger the exchanged aliquot, the more quickly the solutions mix. By varying the fraction, p, that is exchanged, we show that it should be possible to produce a calibration curve with values that vary in concentration over at least 3 orders of magnitude from just two solutions.
机译:我们提供了通过在两个解决方案之间来回交换等分混合两个解决方案的数学描述。我们建议,这种等分试样交换方法可用于以比传统系列稀释方法产生更少溶剂浪费的方式来自动化校准曲线的制备。我们还展示了其在快速混合解决方案中的用途。等分试样交换的过程在数学上由2 x 2对称矩阵A表示,该矩阵是交换的体积或o /液体百分比p的函数。等分交换的每个周期都代表!通过根据先前的浓度操作矩阵A。也就是说,在n个混合周期之后,最终浓度(C↓(i)↑(n))由A(p↓(n))A(p↓(n-1))…A(P↓(1 ))以初始浓度(C↓(i)↑(0))或(A↓(p))↑(n)C↓(i)↑(0)进行操作8代表我们观察到理论与实验之间有着密切的一致性。对于具有相等初始体积的解,矩阵A(p)和可能具有相同或不同p值的任意数量此类矩阵的乘积都具有相等的对角线和相等的非对角线元素(它们是对称的),任何行中元素的和或co.mn的总和为1,并且这些矩阵中的任何一个在一组浓度上的运算都会产生两个新的浓度,其总和与初始浓度的总和相同。我们通过绘制A↑(n)的矩阵元素A↓(l2)↑(n)来跟踪两个等体积溶液的混合过程,随着n的增加,该矩阵元素接近0.5。正如预期的那样,交换的等分试样越大,溶液的混合越快。通过改变交换的分数p,我们表明应该可以生成校正曲线,该校正曲线的浓度值仅从两种溶液中变化至少3个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号