...
首页> 外文期刊>International journal of engine research >Prediction of air-fuel ratio control of a large-bore natural gas engine using computational fluid dynamic modeling of reed valve dynamics
【24h】

Prediction of air-fuel ratio control of a large-bore natural gas engine using computational fluid dynamic modeling of reed valve dynamics

机译:利用簧片阀动态计算流体动力学建模预测大孔天然气发动机的空燃比控制

获取原文
获取原文并翻译 | 示例

摘要

Air-fuel ratio control of large-bore, two-stroke, natural gas engines, typically used in the oil and gas field, is critically important to maintain stable operation and emission compliance. Many two-stroke applications rely on reed valves to control air and gas induction, which can involve complicated gas flow behavior; standard gas dynamic relationships are typically insufficient to characterize such behavior. Computational fluid dynamic simulations offer the needed complexity, but even so the computational fluid dynamic models, as shown in this work, must also capture the dynamic behavior of the valves themselves. The current work reports on a computational fluid dynamics-based model representing this type of large-bore, two-stroke, natural gas engine using commercially available computational fluid dynamic software. The engine under study is an AJAX E-565 with rated power of 30kW (40HP), a bore of 216mm (81/2), and a stroke of 254mm (10). The large engine geometry makes a relatively large solution domain, hence requiring an intense, time-consuming numerical investigation. This large-bore engine works at a rated speed of 525RPM with a compression ratio of 6 to 1. Two approaches to modeling the reed valve are investigated: (1) a pressure difference-based user-defined function and (2) a fluid-structure interaction user-defined function. The pressure difference-based user-defined function captures reed valve behavior in a simple, binary fashion (i.e. valves are either open or closed based on the pressure difference between the intake pipe and the engine's stuffing box). The fluid-structure interaction user-defined function, however, predicts the motion of the reed valve strips based on fluid and body motions; although a more complex solution, the fluid-structure interaction user-defined function accurately predicts the engine's gas exchange process. In this article, the results of each method are presented and validated to show that the added complexity is necessary to properly predict (and thus eventually improve) the engine's air-fuel ratio control.
机译:大孔的空气燃料比控制,两冲程,天然气发动机通常用于油气场,对保持稳定的运行和排放顺应性来说都是重要的。许多两冲程应用依赖于簧片阀来控制空气和气体感应,这可能涉及复杂的气体流动行为;标准气体动态关系通常不足以表征这种行为。计算流体动态模拟提供所需的复杂性,但即使是计算流体动态型号,如本工作所示,也必须也必须捕获阀门本身的动态行为。目前的工作报告关于代表这种类型的基于计算的流体动力学的模型,其使用市售的计算流体动态软件代表这种类型的大孔,双行程,天然气发动机。正在研究的发动机是Ajax E-565,具有30kW(40HP)的额定功率,孔216mm(81/2),中风254mm(10)。大发动机几何形状使得一个相对较大的解决方案域,因此需要强烈,耗时的数值调查。该大孔发动机以525rpm的额定速度工作,压缩比为6至1.调查了建模簧片阀的两种方法:(1)基于压力差的用户定义功能和(2)流体 - 结构交互用户定义函数。基于压差的用户定义功能以简单的二进制方式捕获簧片阀行为(即,基于进气管和发动机的填料盒之间的压力差,阀门打开或关闭)。然而,流体结构相互作用用户定义的功能预测了基于流体和体图的簧片阀带的运动;虽然解决方案更复杂,但流体结构交互用户定义的功能精确地预测发动机的气体交换过程。在本文中,提出和验证了每种方法的结果,表明增加了复杂性,以正确预测(并且因此最终改善)发动机的空燃比控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号