首页> 外文期刊>中国颗粒学报:英文版 >COMPUTATIONAL FLUID DYNAMICS FOR DENSE GAS-SOLID FLUIDIZED BEDS: A MULTI-SCALE MODELING STRATEGY
【24h】

COMPUTATIONAL FLUID DYNAMICS FOR DENSE GAS-SOLID FLUIDIZED BEDS: A MULTI-SCALE MODELING STRATEGY

机译:密集气固流化床的计算流体动力学:多尺度建模策略

获取原文
获取原文并翻译 | 示例
       

摘要

Dense gas-particle flows are encountered in a variety of industrially important processes for large scale production of fuels, fertilizers and base chemicals. The scale-up of these processes is often problematic and is related to the intrinsic complexities of these flows which are unfortunately not yet fully understood despite significant efforts made in both academic and industrial research laboratories. In dense gas-particle flows both (effective) fluid-particle and (dissipative) particle-particle interactions need to be accounted for because these phenomena to a large extent govern the prevailing flow phenomena, i.e. the formation and evolution of heterogeneous structures. These structures have significant impact on the quality of the gas-solid contact and as a direct consequence thereof strongly affect the performance of the process. Due to the inherent complexity of dense gas-particles flows, we have adopted a multi-scale modeling approach in which both fluid-particle and particle-particle interactions can be properly accounted for. The idea is essentially that fundamental models, taking into account the relevant details of fluid-particle (lattice Boltzmann model) and particle-particle (discrete particle model) interactions, are used to develop closure laws to feed continuum models which can be used to compute the flow structures on a much larger (industrial) scale. Our multi-scale approach (see Fig. 1 ) involves the lattice Boltzmann model, the discrete particle model, the continuum model based on the kinetic theory of granular flow,and the discrete bubble model. In this paper we give an overview of the multi-scale modeling strategy, accompanied by illustrative computational results for bubble formation. In addition, areas which need substantial further attention will be highlighted.
机译:在大规模生产燃料,化肥和基础化学品的各种重要工业过程中,都会遇到致密的气体颗粒流。这些过程的规模扩大通常是有问题的,并且与这些流程的内在复杂性有关,尽管在学术和工业研究实验室都做出了巨大的努力,但遗憾的是,这些流程尚未得到充分了解。在致密的气体-颗粒流中,必须考虑(有效)流体-颗粒和(耗散)颗粒-颗粒之间的相互作用,因为这些现象在很大程度上决定了主要的流动现象,即异质结构的形成和演化。这些结构对气固接触的质量有重大影响,并且直接导致强烈影响过程的性能。由于致密的气体颗粒流固有的复杂性,我们采用了多尺度建模方法,其中可以正确考虑流体-颗粒和颗粒-颗粒之间的相互作用。这个想法实质上是,在考虑流体-粒子(晶格玻尔兹曼模型)和粒子-粒子(离散粒子模型)相互作用的相关细节的基础模型的基础上,建立封闭定律,以提供可用于计算的连续模型流动结构的规模更大(工业)。我们的多尺度方法(参见图1)涉及格子Boltzmann模型,离散粒子模型,基于颗粒流动力学理论的连续体模型以及离散气泡模型。在本文中,我们概述了多尺度建模策略,并给出了气泡形成的说明性计算结果。此外,还将重点强调需要进一步关注的领域。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号