...
首页> 外文期刊>Angewandte Chemie >Catalytic Enantioselective Preparation of α-Substituted Allylboronates: One-Pot Addition to Functionalized Aldehydes and a Route to Chiral Allylic Trifluoroborate Reagents
【24h】

Catalytic Enantioselective Preparation of α-Substituted Allylboronates: One-Pot Addition to Functionalized Aldehydes and a Route to Chiral Allylic Trifluoroborate Reagents

机译:催化α-取代的烯丙基硼酸酯的对映选择性制备:一锅加成功能化的醛和手性烯丙基三氟硼酸酯试剂的途径

获取原文
获取原文并翻译 | 示例
           

摘要

Additions of allylic boron reagents to aldehydes have evolved into one of the most popular methods for stereoselective CC bond formation.[1] Compared to dialkyl allylic boranes, allylic boronic esters are often more advantageous as a class of reagents because of their superior stability. Three strategies have been developed for the control of enantiofacial selectivity in additions of allylic boronates to achiral aldehydes: 1) the use of a chiral diol or a diamine auxiliary as the two nonallylic substituents on the boron center;[2] 2) the use of chiral Lewis and Bronsted acid catalysis with achiral boronates;[3] and 3) the use of optically pure α-substituted reagents (so-called α-chiral allylboronates).[4] The preparation of chiral α-substituted allylboronates 1 and their additions to aldehydes were pioneered by Hoffmann and co-workers.[4] Regrettably, these reagents have remained underused in part because of their stepwise preparation based on a Matteson asymmetric homologation of chiral alkenylboronates.[5], [6] The reagent-controlled additions of 1 to aldehydes proceed with near-complete transfer of chirality to give two diastereomeric products 4 and 5 (Scheme 1). These Z and E allylic alcohols are epimeric, and their ratio is highly dependent on the nature of the substituent R1 and the nature of the boronic ester.[4] The ratio of 4 and 5 can be explained in terms of steric and dipolar effects on the two competing transition structures 2 and 3. With a nonpolar alkyl substituent R1, steric interactions play a dominant role. The chairlike transition structure 2 can be destabilized by a steric interaction between a large boronic ester and the pseudoequatorial substituent R1. On the other hand, the transition structure 3 features unfavorable allylic interactions that result from the pseudoaxial position of the R1 substituent. The common use of a hindered ester, such as pinacolate, aggravates the interactions between R1 and the methyl groups of the pinacol moiety in 2. Thus, in this case transition structure 3 is more probable and leads to mixtures of products 4 and 5 in modest selectivities.[7]
机译:在醛中添加烯丙基硼试剂已成为形成立体选择性CC键的最流行方法之一。[1]与二烷基烯丙基硼烷相比,烯丙基硼酸酯由于其优异的稳定性通常作为一类试剂更为有利。除了向非手性醛中添加烯丙基硼酸酯外,还开发了三种控制对面选择性的策略:1)使用手性二醇或二胺助剂作为硼中心的两个非烯丙基取代基; [2] 2)使用非手性硼酸酯的手性路易斯和布朗斯台德酸催化; [3]和3)使用光学纯的α-取代试剂(所谓的α-手性烯丙基硼酸酯)[4]。霍夫曼和他的同事们开创了手性α-取代的烯丙基硼酸酯1的制备及其向醛中的添加。[4]遗憾的是,这些试剂仍未得到充分利用,部分原因是它们是基于手性烯基硼酸酯的Matteson不对称同源物逐步制备的。[5],[6]醛中1的试剂控制加成几乎完全实现了手性的转移两个非对映异构产物4和5(方案1)。这些Z和E烯丙醇是差向异构体,它们的比例高度取决于取代基R1的性质和硼酸酯的性质。[4] 4和5的比例可以用对两个竞争的过渡结构2和3的空间和偶极效应来解释。对于非极性烷基取代基R1,空间相互作用起主要作用。椅状过渡结构2可通过大硼酸酯和假赤道取代基R1之间的空间相互作用而不稳定。另一方面,过渡结构3的特征在于由R1取代基的假轴位置引起的不利的烯丙基相互作用。受阻酯(如频哪酸酯)的常见用法加重了R1和2中频哪醇部分的甲基之间的相互作用。因此,在这种情况下,过渡结构3的可能性更大,并导致产物4和5适度地混合在一起选择性。[7]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号