首页> 外文期刊>Antimicrobial agents and chemotherapy. >Cyclic Boronates Inhibit All Classes of beta-Lactamases
【24h】

Cyclic Boronates Inhibit All Classes of beta-Lactamases

机译:循环硼酸酯抑制所有β-内酰胺酶的类别

获取原文
获取原文并翻译 | 示例
           

摘要

Lactamase- mediated resistance is a growing threat to the continued use of beta- lactam antibiotics. The use of the beta-lactam-based serine-beta-lactamase ( SBL) inhibitors clavulanic acid, sulbactam, and tazobactam and, more recently, the non-beta lactam inhibitor avibactam has extended the utility of beta-lactams against bacterial infections demonstrating resistance via these enzymes. These molecules are, however, ineffective against the metallo-beta-lactamases ( MBLs), which catalyze their hydrolysis. To date, there are no clinically available metallo-beta-lactamase inhibitors. Coproduction of MBLs and SBLs in resistant infections is thus of major clinical concern. The development of "dual-action" inhibitors, targeting both SBLs and MBLs, is of interest, but this is considered difficult to achieve due to the structural and mechanistic differences between the two enzyme classes. We recently reported evidence that cyclic boronates can inhibit both serine-and metallo-beta-lactamases. Here we report that cyclic boronates are able to inhibit all four classes of beta-lactamase, including the class A extended spectrum beta-lactamase CTX-M-15, the class C enzyme AmpC from Pseudomonas aeruginosa, and class D OXA enzymes with carbapenem-hydrolyzing capabilities. We demonstrate that cyclic boronates can potentiate the use of beta-lactams against Gram-negative clinical isolates expressing a variety of beta-lactamases. Comparison of a crystal structure of a CTX-M-15: cyclic boronate complex with structures of cyclic boronates complexed with other beta-lactamases reveals remarkable conservation of the small-molecule binding mode, supporting our proposal that these molecules work by mimicking the common tetrahedral anionic intermediate present in both serine-and metallo-beta-lactamase catalysis.
机译:乳酰胺酶介导的抗性是对继续使用β-内酰胺抗生素的延长造成的威胁。使用β-内酰胺的丝氨酸β-内酰胺酶(SBL)抑制剂克拉维酸克拉氨酰酸,苏术酰胺和碲酸酐,并且最近,非β内酰胺抑制剂Avibactam已经延长了β-内酰胺的效用,这对证明抗性的细菌感染通过这些酶。然而,这些分子对金属β-内酰胺酶(MBL)无效,其催化它们的水解。迄今为止,没有临床上可获得的金属β-内酰胺酶抑制剂。因此,抗性感染的MBL和SBL的共同产生是主要的临床关注。靶向SBL和MBLS的“双动作”抑制剂的发展是感兴趣的,但由于两种酶类别之间的结构和机械差异,这被认为是难以实现的。我们最近报告了循环硼酸盐可以抑制丝氨酸和金属β-内酰胺酶的证据。在这里,我们报告的是,循环硼酸盐能够抑制所有四种类别的β-内酰胺酶,包括扩展谱β-乳酰胺酶CTX-M-15,来自假单胞菌铜绿假单胞菌的C类C酶AMPC,以及与Carbapemem的D类牛肉酶水解能力。我们证明循环硼酸盐可以使β-内酰胺与表达各种β-内酰胺酶的革兰氏阴性临床分离物一起使用β-内酰胺。 CTX-M-15的晶体结构的比较:与其他β-内酰胺酶复合的环状硼酸盐结构的环状硼酸盐络合物揭示了小分子结合模式的显着守恒,支持我们的提议,即这些分子通过模仿常见的四面体工作在丝氨酸和金属β-内酰胺酶催化中存在阴离子中间体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号