首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >Exergy aided pinch analysis to enhance energy integration towards environmental sustainability in a chlorine-caustic soda production process
【24h】

Exergy aided pinch analysis to enhance energy integration towards environmental sustainability in a chlorine-caustic soda production process

机译:高级辅助净化分析,以提高氯烧碱生产过程中环境可持续性的能量集成

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This paper presents a case study on the improvement of energy integration in a chlorine-caustic soda process based on the main sources of thermal exergy losses. Exergy analysis has been performed to pinpoint the causes of thermal exergetic inefficiency. Thermal solutions have been then developed, leading to a comprehensive list of cold and hot process streams. Finally, pinch analysis has been brought into action to estimate the minimum energy requirement, to select utilities and to design heat exchanger network. As a result, the combined methodology followed here takes advantages of both exergy and pinch analyses. This bilateral thermal-exergy-based pinch approach helps to set energy targets in a way that all the possible thermal solutions supported by exergy analysis are considered, including all hot and cold process streams that have a high potential for heat integration during pinch analysis. To demonstrate this, energy targeting through conventional pinch analysis leads to 7.74 MW and 13.00 MW of hot and cold utility energy demand, respectively. These figures change to 8.17 MW and 0.40 MW of hot and cold utility energy demand, respectively through streams screening by the combined methodology. (C) 2017 Elsevier Ltd. All rights reserved.
机译:本文提出了一种案例研究,基于热气损失的主要来源,提高氯烧碱过程中能量整合的案例研究。已经进行了漏洞分析,以确定热防渗效率低下的原因。然后开发了热解,导致综合清单的冷热过程流。最后,缩短分析已经采取行动来估计最低能源要求,选择公用事业和设计热交换器网络。结果,随后的组合方法采用了渗透率和捏分析。这种基于双侧热漏光的捏合方法有助于设置能源目标的方式,即考虑到过度分析的所有可能的热解,包括在夹切分析期间具有高潜力的热和冷工艺流。为了证明这一点,通过传统的捏分析靶向的能量分别导致7.74兆瓦和13.00兆瓦的热和冷水能量需求。这些数字通过组合方法分别通过流筛选来改变为8.17兆瓦和0.40兆瓦的热和冷水能量需求。 (c)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号