首页> 外文期刊>Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications >Enhanced photoelectrochemical properties of ZnO/ZnSe/CdSe/Cu2-xSe core-shell nanowire arrays fabricated by ion-replacement method
【24h】

Enhanced photoelectrochemical properties of ZnO/ZnSe/CdSe/Cu2-xSe core-shell nanowire arrays fabricated by ion-replacement method

机译:通过离子替代方法制造的ZnO / ZnSE / CDSE / CU2-XSE核心壳纳米线阵列的增强光电化学性能

获取原文
获取原文并翻译 | 示例
           

摘要

The core-shell structures are designed to take advantages of each material to improve the photo electrochemical (PEC) performance. Here we report a facile ion-replacement strategy for fabricating ZnO/ZnSe/CdSe/Cu2-xSe core-shell nanowire arrays grown on Fluorine-doped tin oxide (FTO) glass under hydrothermal conditions. Under illumination with AM 1.5G, the designed ZnO/ZnSe/CdSe/Cu2-xSe core-shell nanowire arrays exhibit superior PEC performance with the highest photocurrent density of 20.57 mA/cm(2), which is 29.4 times higher than that of the ZnO nanowire arrays at 0 V versus Ag/AgCl, and achieve the incident photon conversion efficiency (IPCE) of 87.6% at 410 nm without applying bias potential. The superior PEC performance of the ZnO/ZnSe/CdSe/Cu2-xSe core-shell nanowire arrays results from the synergistic effects of each material. Vertical aligned ZnO hexagonal prisms provided large specific surface area and electron access along the axial direction. ZnSe layer further extended specific surface area and the range of light absorption. CdSe layer enhanced the visible light absorption vastly and fully utilized the incident light. P-type Cu2-xSe layer produced p-n junctions, which could not only prevent the recombination, but also promote the separation and transmission of photo-generated electron-hole pairs. The synergistic action of each component in ZnO/ZnSe/CdSe/Cu2-xSe core-shell nanowire arrays led an outstanding PEC performance. The synthetic strategy achieved in this work can have promising applications for designing highly efficient electrodes of other materials for water splitting. (C) 2017 Elsevier B.V. All rights reserved.
机译:芯壳结构旨在采用各材​​料的优点来改善光学电化学(PEC)性能。在这里,我们报告了在水热条件下在氟掺杂的氧化锡(FTO)玻璃上生长的ZnO / ZnSe / Cdse / Cu2-XSE核壳纳米线阵列的容易离子替换策略。在与AM 1.5G的照明下,设计的ZnO / ZnSe / Cdse / Cu2-XSE核心壳纳米线阵列具有卓越的PEC性能,具有20.57mA / cm(2)的最高光电流密度,这比比其更高的29.4倍。 ZnO纳米线阵列在0 V与AG / AGCl,并在410nm处实现87.6%的事件光子转换效率(IPCE),而无需偏向潜力。 ZnO / ZNSE / CDSE / CU2-XSE核心壳纳米线阵列的卓越PEC性能产生了每种材料的协同效应。垂直对齐的ZnO六边形棱镜提供了大的比表面积和沿轴向的电子进入。 ZnSe层进一步扩展了比表面积和光吸收的范围。 CDSE层增强了可见光吸收,并充分利用了入射光。 P型Cu2-XSE层产生了P-N结,这不仅可以防止重组,而且促进光产生的电子孔对的分离和透射。 ZnO / ZnSE / CDSE / CU2-XSE核心 - 壳体纳米线阵列中每个组件的协同作用LED突出的PEC性能。本作工作中实现的合成策略可以具有希望设计用于水分裂的其他材料的高效电极的应用。 (c)2017 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号