首页> 外文期刊>Analytical and bioanalytical chemistry >On-line analysis and in situ pH monitoring of mixed acid fermentation by Escherichia coli using combined FTIR and Raman techniques
【24h】

On-line analysis and in situ pH monitoring of mixed acid fermentation by Escherichia coli using combined FTIR and Raman techniques

机译:使用联合FTIR和拉曼技术对大肠杆菌进行混合酸发酵的在线分析及其原位pH监测

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We introduce an experimental setup allowing continuous monitoring of bacterial fermentation processes by simultaneous optical density (OD) measurements, long-path FTIR headspace monitoring of CO2, acetaldehyde and ethanol, and liquid Raman spectroscopy of acetate, formate, and phosphate anions, without sampling. We discuss which spectral features are best suited for detection, and how to obtain partial pressures and concentrations by integrations and least squares fitting of spectral features. Noise equivalent detection limits are about 2.6 mM for acetate and 3.6 mM for formate at 5 min integration time, improving to 0.75 mM for acetate and 1.0 mM for formate at 1 h integration. The analytical range extends to at least 1 M with a standard deviation of percentage error of about 8%. The measurement of the anions of the phosphate buffer allows the spectroscopic, in situ determination of the pH of the bacterial suspension via a modified Henderson-Hasselbalch equation in the 6-8 pH range with an accuracy better than 0.1. The 4 m White cell FTIR measurements provide noise equivalent detection limits of 0.21 mu bar for acetaldehyde and 0.26 mu bar for ethanol in the gas phase, corresponding to 3.2 mu M acetaldehyde and 22 mu M ethanol in solution, using Henry's law. The analytical dynamic range exceeds 1 mbar ethanol corresponding to 85 mM in solution. As an application example, the mixed acid fermentation ofEscherichia coliis studied. The production of CO2, ethanol, acetaldehyde, acids such as formate and acetate, and the changes in pH are discussed in the context of the mixed acid fermentation pathways. Formate decomposition into CO(2)and H(2)is found to be governed by a zeroth-order kinetic rate law, showing that adding exogenous formate to a bioreactor withE.coliis expected to have no beneficial effect on the rate of formate decomposition and biohydrogen production.
机译:我们介绍了一种实验性设置,可以通过同时光密度(OD)测量,CO 2,乙醛和乙醇的长路径FTIR网球监测,乙酸酯,甲酸酯和磷酸根阴离子的液体拉曼光谱,连续监测细菌发酵过程,无需取样。我们讨论哪种光谱特征最适合检测,以及如何通过集成和最小二乘拟合来获得部分压力和浓度的光谱特征。乙酸噪声等效检测限量为约2.6mm,在5分钟的整合时间下为甲酸甲酸甲酸甲酸,乙酸盐的0.75mm,1小时内甲酸酯,1.0mm。分析范围延伸至至少1米,标准偏差约为8%。磷酸盐缓冲液的阴离子的测量允许光谱法通过改性的Henderson-Hasselbalch方程在6-8个pH范围内的细菌悬浮液的pH测定,精度优于0.1。 4米白电池FTIR测量为乙醛提供0.21μm的噪声等效检测限,对应于气相中的乙醇,对应于3.2μm乙醛和22μm乙醇,溶液中的溶液,使用亨利定律。分析动态范围超过1毫巴的乙醇,对应于85mm的溶液。作为应用实例,研究了Coliis的混合酸发酵。在混合酸发酵途径的背景下讨论了CO 2,乙醇,乙醛,酸等甲酸乙酯,酸等酸,以及pH的变化。将分解成CO(2)和H(2)被发现由零顺序动力学率法管辖,表明将外源甲酸甲酸甲酸酯加入生物反应器中,预期对甲酸盐分解的速率没有有益的影响。生物氢生产。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号