...
首页> 外文期刊>Angewandte Chemie >Photoelectrochemistry with Ordered CdS Nanoparticle/Relay or Photosensitizer/Relay Dyads on DNA Scaffolds
【24h】

Photoelectrochemistry with Ordered CdS Nanoparticle/Relay or Photosensitizer/Relay Dyads on DNA Scaffolds

机译:DNA支架上有序CdS纳米颗粒/接力或光敏剂/接力染料的光电化学

获取原文
获取原文并翻译 | 示例
           

摘要

Stepwise vectorial electron transfer from a photoexcited species to an electron acceptor cascade that displays a downhill potential gradient is the fundamental principle in the accomplishment of effective charge separation in natural photosynthesis. During the last three decades, extensive research efforts have been directed to adapt the principles of charge separation in the photosynthetic apparatus to artificial systems. Ingenious photosensitizer-electron acceptor chains in covalently linked molecular structures, supramolecular structures, or organized microenvironments have been reported as means to stimulate photoinduced vectorial electron transfer and to accomplish charge separation. The concept of vectorial electron transfer and enhanced charge separation was also adopted in semiconductor nanoparticle systems. Photogeneration of electron-hole pairs in core-shell nanoparticles or hybrid nanoparticles was reported to enhance charge separation by interparticle electron trans-fer. similarly, the assembly of relay/semiconductor nanoparticle systems on electrodes was reported to provide a means to trap the conduction-band electrons and thus enhance the generation of photocurrents by preventing the electron-hole recombination process at the nanoparticle surface.
机译:从光激发物种到显示下坡电位梯度的电子受体级联的逐步矢量电子转移是完成自然光合作用中有效电荷分离的基本原理。在过去的三十年中,已经进行了广泛的研究,以使光合装置中电荷分离的原理适应人工系统。据报道,共价连接的分子结构,超分子结构或有组织的微环境中的巧妙的光敏剂-电子受体链是刺激光诱导矢量电子转移并完成电荷分离的手段。半导体纳米粒子系统中也采用了矢量电子转移和增强电荷分离的概念。据报道,核-壳纳米颗粒或杂化纳米颗粒中电子-空穴对的光生作用可增强通过颗粒间电子转移的电荷分离。类似地,据报道,在电极上的中继/半导体纳米粒子系统的组装提供了一种捕获导带电子的手段,从而通过防止纳米粒子表面的电子-空穴复合过程来增强光电流的产生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号