首页> 外文期刊>American Journal of Physiology >Influence of cytoskeletal structure and mechanics on epithelial cell injury during cyclic airway reopening.
【24h】

Influence of cytoskeletal structure and mechanics on epithelial cell injury during cyclic airway reopening.

机译:细胞骨骼结构与力学对循环气道重新开发过程中上皮细胞损伤的影响。

获取原文
获取原文并翻译 | 示例
       

摘要

Although patients with acute respiratory distress syndrome require mechanical ventilation, these ventilators often exacerbate the existing lung injury. For example, the cyclic closure and reopening of fluid-filled airways during ventilation can cause epithelial cell (EpC) necrosis and barrier disruption. Although much work has focused on minimizing the injurious mechanical forces generated during ventilation, an alternative approach is to make the EpC less susceptible to injury by altering the cell's intrinsic biomechanical/biostructural properties. In this study, we hypothesized that alterations in cytoskeletal structure and mechanics can be used to reduce the cell's susceptibility to injury during airway reopening. EpC were treated with jasplakinolide to stabilize actin filaments or latrunculin A to depolymerize actin and then exposed to cyclic airway reopening conditions at room temperature using a previously developed in vitro cell culture model. Actin stabilization did not affect cell viability but significantly improved cell adhesion primarily due to the development of more numerous focal adhesions. Surprisingly, actin depolymerization significantly improved both cell viability and cell adhesion but weakened focal adhesions. Optical tweezer based measurements of the EpC's micromechanical properties indicate that although latrunculin-treated cells are softer, they also have increased viscous damping properties. To further investigate the effect of "fluidization
机译:虽然急性呼吸窘迫综合征患者需要机械通气,但这些呼吸机通常会加剧现有的肺损伤。例如,通风期间循环封闭和再打开流体填充的气道可引起上皮细胞(EPC)坏死和屏障中断。虽然很多工作都集中在最小化通风期间产生的伤害机械力,但是另一种方法是通过改变细胞的内在生物力学/生物结构性能来使EPC易受损伤。在这项研究中,我们假设细胞骨架结构和力学的改变可用于降低气道重新开发期间对细胞对损伤的敏感性。 EPC用JasplakinoLide处理,以稳定肌动蛋白长丝或Latrunculin A,以将肌动蛋白解解,然后使用先前显影的体外细胞培养模型在室温下暴露于循环气道重新打开条件。肌动蛋白稳定性不会影响细胞活力,但显着提高了细胞粘附,主要是由于凸起的局灶性粘连的发展。令人惊讶的是,肌动蛋白解聚显着改善了细胞活力和细胞粘附性,但焦粘连削弱。基于光学镊子的EPC微机械性能的测量表明,尽管Latrunculin处理的细胞更柔软,但它们也具有增加的粘性阻尼性能。进一步研究“流化化”的效果

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号