首页> 外文期刊>ACS applied materials & interfaces >New Antimony Selenide/Nickel Oxide Photocathode Boosts the Efficiency of Graphene Quantum-Dot Co-Sensitized Solar Cells
【24h】

New Antimony Selenide/Nickel Oxide Photocathode Boosts the Efficiency of Graphene Quantum-Dot Co-Sensitized Solar Cells

机译:新的硒化烯烃/氧化镍光电处理促进了石墨烯量子点共敏化太阳能电池的效率

获取原文
获取原文并翻译 | 示例
       

摘要

A novel assembly of a photocathode and a photoanode is investigated to explore their complementary effects in enhancing the photovoltaic performance of a quantum dot solar cell (QDSC). While p-type nickel oxide (NiO) has been used previously, antimony selenide (Sb2Se3) has not been used in a QDSC, especially as a component of a counter electrode (CE) architecture that doubles as the photocathode. Here, near-infrared (NIR) light-absorbing Sb2Se3 nanoparticles (NPs) coated over electrodeposited NiO nanofibers on a carbon (C) fabric substrate was employed as the highly efficient photocathode. Quasi-spherical Sb2Se3 NPs, with a band gap of 1.13 eV, upon illumination, release photoexcited electrons in addition to other charge carriers at the CE to further enhance the reduction of the oxidized polysulfide. The p-type conducting behavior of Sb2Se3, coupled with a work function at 4.63 eV, also facilitates electron injection to polysulfide. The effect of graphene quantum dots (GQDs) as co-sensitizers as well as electron conduits is also investigated in which a TiO2/CdS/GQDs photoanode structure in combination with a C-fabric CE delivered a power-conversion efficiency (PCE) of 5.28%, which is a vast improvement over the 4.23% that is obtained by using a TiO2/CdS photoanode (without GQDs) with the same CE. GQDs, due to a superior conductance, impact efficiency more than Sb2Se3 NPs do. The best PCE of a TiO2/CdS/GQDs-nS(2-)/S-n(2-)-Sb2Se3/NiO/C-fabric cell is 5.96% (0.11 cm(2) area), which, when replicated on a smaller area of 0.06 cm(2), is seen to increase dramatically to 7.19%. The cell is also tested for 6 h of continuous irradiance. The rationalization for the channelized photogenerated electron movement, which augments the cell performance, is furnished in detail in these studies.
机译:研究了光电阴极和光电码的新组装,以探讨它们在提高量子点太阳能电池(QDSC)的光伏性能方面的互补效果。虽然先前已经使用了p型氧化镍(NIO),但硒化烯烃(SB2SE3)尚未在QDSC中使用,特别是作为作为光电阴极加倍的对电极(CE)架构的组件。这里,在碳(C)织物基材上涂覆在碳(C)织物基材上的电沉积NiO纳米纤维上的近红外(NIR)光吸收SB2Se3纳米颗粒(NPS)作为高效的光电阴极。在氨基球派SB2Se3 nPS,在照明时,在照明时,在照明时具有1.13eV的带隙,除了Ce处的其他电荷载体之外,除了其他电荷载体之外,进一步增强氧化多硫化物的还原。 Sb2se3的p型导电行为与4.63eV的功函数相结合,还促进了对多硫化物的电子注射。石墨烯量子点(GQDS)作为共敏化剂以及电子导管的效果也研究,其中TiO2 / CDS / GQDS光电结构与C型织物CE组合提供了5.28的电力转换效率(PCE) %是通过使用TiO2 / CD PhotoNode(没有GQDS)而获得的4.23%的巨大改进。 GQDS,由于卓越的电导,影响效率超过了SB2SE3 NPS。 TiO2 / Cds / GQDS-ns(2 - )/ sn(2 - ) - sb2se3 / nio / c织物细胞的最佳pce为5.96%(0.11cm(2)区域),在较小的情况下面积为0.06厘米(2),被认为急剧增加至7.19%。还测试电池6小时的连续辐照度。在这些研究中详细提供了增强电池性能的通道化光发化电子运动的合理化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号